Matching Items (65)
133795-Thumbnail Image.png
Description
Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix

Since its discovery in 1524, many people have characterized the vermiform appendix. Charles Darwin considered the human appendix to be a vestige and a useless structure. Others at the time opposed this hypothesis. However, Darwin's hypothesis became prevalent one until recently when there became a renewed interest in the appendix because of advancements in microscopes, knowledge of the immune system, and phylogenetics. In this review, I will argue that the vermiform appendix, although still not completely understood, has important functions. First, I will give the anatomy of the appendix. I will discuss the comparative anatomy between different animals and also primates. I will address the effects of appendicitis and appendectomy. I will give background on vestigial structures and will discuss if the appendix is a vestige. Following, I will review the evolution of the appendix. Finally, I will argue that the function of the appendix is as an immune organ, including discussion of gut-associated lymphoid tissue (GALT), development of lymphoid follicles in GALT and their comparison within different organs, Immunoglobulin A (IgA) function in the gut, biofilms as evidence that the appendix is a safe-house for beneficial bacteria, re-inoculation of the bowel, and protection against recurring infection. I will conclude with future studies that should be conducted to further our understanding of the vermiform appendix.
ContributorsPrestwich, Shelby Elizabeth (Author) / Cartwright, Reed (Thesis director) / Lynch, John (Committee member) / Furstenau, Tara (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134524-Thumbnail Image.png
Description
With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even

With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even more important to consider for institutions that rely on their own servers rather than large data centers (cloud storage)1. Compression algorithms aim to reduce the amount of space taken up by large genomic datasets by encoding the most frequently occurring symbols with the shortest bit codewords and by changing the order of the data to make it easier to encode. Depending on the probability distribution of the symbols in the dataset or the structure of the data, choosing the wrong algorithm could result in a compressed file larger than the original or a poorly compressed file that results in a waste of time and space2. To test efficiency among compression algorithms for each file type, 37 open-source compression algorithms were used to compress six types of genomic datasets (FASTA, VCF, BCF, GFF, GTF, and SAM) and evaluated on compression speed, decompression speed, compression ratio, and file size using the benchmark test lzbench. Compressors that outpreformed the popular bioinformatics compressor Gzip (zlib -6) were evaluated against one another by ratio and speed for each file type and across the geometric means of all file types. Compressors that exhibited fast compression and decompression speeds were also evaluated by transmission time through variable speed internet pipes in scenarios where the file was compressed only once or compressed multiple times.
ContributorsHowell, Abigail (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Taylor, Jay (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135454-Thumbnail Image.png
Description
Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes

Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes undergoing positive selection show faster rates. These may be related to the difference between humans and other primates. Three genes were found to be accelerated were FOXF1, IGFBP5, and ATP2B2, but only the latter one was found in humans and it seems unlikely that it would be related to the differences between mammary gland development at puberty between humans and non-human primates.
ContributorsArroyo, Diana (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Schwartz, Rachel (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
168733-Thumbnail Image.png
Description
This dissertation describes a series of four studies on cognitive aging, working memory, and cognitive flexibility in dogs (Canis lupus familiaris) and their wild relatives. In Chapters 2 and 3, I designed assessments for age-related cognitive deficits in pet dogs which can be deployed rapidly using inexpensive and accessible materials.

This dissertation describes a series of four studies on cognitive aging, working memory, and cognitive flexibility in dogs (Canis lupus familiaris) and their wild relatives. In Chapters 2 and 3, I designed assessments for age-related cognitive deficits in pet dogs which can be deployed rapidly using inexpensive and accessible materials. These novel tests can be easily implemented by owners, veterinarians, and clinicians and therefore, may improve care for elderly dogs by aiding in the diagnosis of dementia. In addition, these widely deployable tests may facilitate the use of dementia in pet dogs as a naturally occurring model of Alzheimer’s Disease in humans.In Chapters 4 and 5, I modified one of these tests to demonstrate for the first time that coyotes (Canis latrans) and wolves (Canis lupus lupus) develop age-related deficits in cognitive flexibility. This was an important first step towards differentiating between the genetic and environmental components of dementia in dogs and in turn, humans. Unexpectedly, I also detected cognitive deficits in young, adult dogs and wolves but not coyotes. These finding add to a recent shift in understanding cognitive development in dogs which may improve cognitive aging tests as well as training, care, and use of working and pet dogs. These findings also suggest that the ecology of coyotes may select for flexibility earlier in development. In Chapter 5, I piloted the use of the same cognitive flexibility test for red and gray foxes so that future studies may test for lifespan changes in the cognition of small-bodied captive canids. More broadly, this paradigm may accommodate physical and behavioral differences between diverse pet and captive animals. In Chapters 4 and 5, I examined which ecological traits drive the evolution of behavioral flexibility and in turn, species resilience. I found that wolves displayed less flexibility than dogs and coyotes suggesting that species which do not rely heavily on unstable resources may be ill-equipped to cope with human habitat modification. Ultimately, this comparative work may help conservation practitioners to identify and protect species that cannot cope with rapid and unnatural environmental change.
ContributorsVan Bourg, Joshua (Author) / Wynne, Clive D (Thesis advisor) / Aktipis, C. Athena (Committee member) / Gilby, Ian C (Committee member) / Young, Julie K (Committee member) / Arizona State University (Publisher)
Created2022
156871-Thumbnail Image.png
Description
Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of

Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of arid-adapted flightless beetles found throughout western North America. Four interconnected studies that jointly increase our knowledge of this group are presented. First, the darkling beetle fauna of the Algodones sand dunes in southern California is examined as a case study to explore the scientific practice of checklist creation. An updated list of the species known from this region is presented, with a critical focus on material now made available through digitization and global aggregation. This part concludes with recommendations for future biodiversity checklist authors. Second, the psammophilic genus Trogloderus LeConte, 1879 is revised. Six new species are described, and the first, multi-gene phylogeny for the genus is inferred. In addition, historical biogeographic reconstructions along with novel hypotheses of speciation patterns within the Intermountain Region are given. In particular, the Kaibab Plateau and Kaiparowitz Formation are found to have promoted speciation on the Colorado Plateau. The Owens Valley and prehistoric Bouse Embayment are similarly hypothesized to drive species diversification in southern California. Third, a novel phylogenomic analysis for the tribe Amphidorini is presented, based on 29 de novo partial transcriptomes. Three putative ortholog sets were discovered and analyzed to infer the relationships between species groups and genera. The existing classification of the tribe is found to be highly inadequate, though the earliest-diverging relationships within the tribe are still in question. Finally, the new phylogenetic framework is used to provide a genus-level revision for the Amphidorini, which previously contained six valid genera and 253 valid species. This updated classification includes more than 100 taxonomic changes and results in the revised tribe consisting of 16 genera, with three being described as new to science.
ContributorsJohnston, Murray Andrew (Author) / Franz, Nico M (Thesis advisor) / Cartwright, Reed (Committee member) / Taylor, Jesse (Committee member) / Pigg, Kathleen (Committee member) / Arizona State University (Publisher)
Created2018
155884-Thumbnail Image.png
Description

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and well-being. The main obstacle in creating a sustainable urban community in a desert city with trees is the scarceness and cost of irrigation water. Thus, strategically located and arranged desert trees with the fewest tree numbers possible potentially translate into significant energy, water and long-term cost savings as well as conservation, economic, and health benefits. The objective of this dissertation is to achieve this research goal with integrated methods from both theoretical and empirical perspectives.

This dissertation includes three main parts. The first part proposes a spatial optimization method to optimize the tree locations with the objective to maximize shade coverage on building facades and open structures and minimize shade coverage on building rooftops in a 3-dimensional environment. Second, an outdoor urban physical scale model with field measurement is presented to understand the cooling and locational benefits of tree shade. The third part implements a microclimate numerical simulation model to analyze how the specific tree locations and arrangements influence outdoor microclimates and improve human thermal comfort. These three parts of the dissertation attempt to fill the research gap of how to strategically locate trees at the building to neighborhood scale, and quantifying the impact of such arrangements.

Results highlight the significance of arranging residential shade trees across different geographical scales. In both the building and neighborhood scales, research results recommend that trees should be arranged in the central part of the building south front yard. More cooling benefits are provided to the building structures and outdoor microclimates with a cluster tree arrangement without canopy overlap; however, if residents are interested in creating a better outdoor thermal environment, open space between trees is needed to enhance the wind environment for better human thermal comfort. Considering the rapid urbanization process, limited water resources supply, and the severe heat stress in the urban areas, judicious design and planning of trees is of increasing importance for improving the life quality and sustaining the urban environment.

ContributorsZhao, Qunshan (Author) / Wentz, Elizabeth (Thesis advisor) / Sailor, David (Committee member) / Wang, Zhi-Hua (Committee member) / Arizona State University (Publisher)
Created2017
157836-Thumbnail Image.png
Description
ABSTRACT

Domestic dogs have assisted humans for millennia. However, the extent to which these helpful behaviors are prosocially motivated remains unclear. To assess the propensity of pet dogs to spontaneously and actively rescue distressed humans, this study tested whether sixty pet dogs would release their seemingly trapped owners from a large

ABSTRACT

Domestic dogs have assisted humans for millennia. However, the extent to which these helpful behaviors are prosocially motivated remains unclear. To assess the propensity of pet dogs to spontaneously and actively rescue distressed humans, this study tested whether sixty pet dogs would release their seemingly trapped owners from a large box. To examine the causal mechanisms that shaped this behavior, the readiness of each dog to open the box was tested in three conditions: 1) the owner sat in the box and called for help (“Distress” test), 2) an experimenter placed high-value food rewards in the box (“Food” test), and 3) the owner sat in the box and calmly read aloud (“Reading” test).

Dogs were as likely to release their distressed owner as to retrieve treats from inside the box, indicating that rescuing an owner may be a highly rewarding action for dogs. After accounting for ability, dogs released the owner more often when the owner called for help than when the owner read aloud calmly. In addition, opening latencies decreased with test number in the Distress test but not the Reading test. Thus, rescuing the owner could not be attributed solely to social facilitation, stimulus enhancement, or social contact-seeking behavior.

Dogs displayed more stress behaviors in the Distress test than in the Reading test, and stress scores decreased with test number in the Reading test but not in the Distress test. This evidence of emotional contagion supports the hypothesis that rescuing the distressed owner was an empathetically-motivated prosocial behavior. Success in the Food task and previous (in-home) experience opening objects were both strong predictors of releasing the owner. Thus, prosocial behavior tests for dogs should control for physical ability and previous experience.
ContributorsVan Bourg, Joshua Lazar (Author) / Wynne, Clive D (Thesis advisor) / Gilby, Ian C (Committee member) / Aktipis, C. Athena (Committee member) / Arizona State University (Publisher)
Created2019
158849-Thumbnail Image.png
Description
Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The

Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The problem of accurate genotyping is exacerbated when
there is not a reference genome or other auxiliary information available.
I explore several methods for sensitively detecting mutations in non-model or-
ganisms using an example Eucalyptus melliodora individual. I use the structure of
the tree to find bounds on its somatic mutation rate and evaluate several algorithms
for variant calling. I find that conventional methods are suitable if the genome of a
close relative can be adapted to the study organism. However, with structured data,
a likelihood framework that is aware of this structure is more accurate. I use the
techniques developed here to evaluate a reference-free variant calling algorithm.
I also use this data to evaluate a k-mer based base quality score recalibrator
(KBBQ), a tool I developed to recalibrate base quality scores attached to sequencing
data. Base quality scores can help detect errors in sequencing reads, but are often
inaccurate. The most popular method for correcting this issue requires a known
set of variant sites, which is unavailable in most cases. I simulate data and show
that errors in this set of variant sites can cause calibration errors. I then show that
KBBQ accurately recalibrates base quality scores while requiring no reference or other
information and performs as well as other methods.
Finally, I use the Eucalyptus data to investigate the impact of quality score calibra-
tion on the quality of output variant calls and show that improved base quality score
calibration increases the sensitivity and reduces the false positive rate of a variant
calling algorithm.
ContributorsOrr, Adam James (Author) / Cartwright, Reed (Thesis advisor) / Wilson, Melissa (Committee member) / Kusumi, Kenro (Committee member) / Taylor, Jesse (Committee member) / Pfeifer, Susanne (Committee member) / Arizona State University (Publisher)
Created2020
161497-Thumbnail Image.png
Description
The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males

The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males and females. The goal of the study was to identify germline variation that differs by sex in hepatocellular carcinoma. Using the program, multiple pathways and genes were identified to have significant differences in their relationship to liver cancer in males and females. In animal studies, the genes which were identified using the PoDA analysis have been shown to impact liver cancer, often with different results for males and females. While these genes are often the focus in animal models, they are absent from current Genome Wide Association Studies (GWAS) catalogs for humans. By working to bridge the results of animal studies and human studies, the results help to identify the causes of liver cancer, and more specifically, the reason the disease affects males at much higher rates. The differences in pathways identified to be significant for the two sexes indicate the germline variance may play sex-specific roles in the development of hepatocellular carcinoma. Additionally, these results reinforce the capacity of the PoDA analysis to identify genes that may be missed by more traditional GWAS methods. This study lays the groundwork for further investigations into the identified genes and pathways, and how they behave differently within males and females.
ContributorsOlson, Erik Jon (Author) / Buetow, Kenneth (Thesis advisor) / Wilson, Melissa (Committee member) / Cartwright, Reed (Committee member) / Arizona State University (Publisher)
Created2021