Matching Items (130)
157179-Thumbnail Image.png
Description
No studies have evaluated the impact of tracking resting energy expenditure (REE) and modifiable health behaviors on gestational weight gain (GWG). In this controlled trial, pregnant women aged >18 years (X=29.8±4.9 years) with a gestational age (GA) <17 weeks were randomized to Breezing™ (N=16) or control (N=12) for 13 weeks.

No studies have evaluated the impact of tracking resting energy expenditure (REE) and modifiable health behaviors on gestational weight gain (GWG). In this controlled trial, pregnant women aged >18 years (X=29.8±4.9 years) with a gestational age (GA) <17 weeks were randomized to Breezing™ (N=16) or control (N=12) for 13 weeks. The Breezing™ group used a real-time metabolism tracker to obtain REE. Anthropometrics, diet, and sleep data were collected every 2 weeks. Rate of GWG was calculated as weight gain divided by total duration. Early (GA weeks 14-21), late (GA weeks 21-28), and overall (GA week 14-28) changes in macronutrients, sleep, and GWG were calculated. Mediation models were constructed using SPSS PROCESS macro using a bootstrap estimation approach with 10,000 samples. The majority of women were non-Hispanic Caucasian (78.6%). A total of 35.7% (n=10), 35.7% (n=10), and 28.6% (n=8) were normal weight, overweight, and obese, respectively, with 83.3% (n=10) and 87.5% (n=14) of the Control and Breezing™ groups gaining above IOM GWG recommendations. At baseline, macronutrient consumption did not differ. Overall (Breezing™ vs. Control; M diff=-349.08±150.77, 95% CI: -660.26 to -37.90, p=0.029) and late (M diff=-379.90±143.89, 95% CI:-676.87 to -82.93, p=0.014) changes in energy consumption significantly differed between the groups. Overall (M diff=-22.45±11.03, 95% CI: -45.20 to 0.31, p=0.053), late (M diff=-23.16±11.23, 95% CI: -46.33 to 0.01, p=0.05), and early (M diff=20.3±10.19, 95% CI: -0.74 to 41.34, p=0.058) changes in protein differed by group. Nocturnal total sleep time differed by study group (Breezing vs. Control; M diff=-32.75, 95% CI: -68.34 to 2.84, p=0.069). There was a 11.5% increase in total REE throughout the study. Early changes in REE (72±211 kcals) were relatively small while late changes (128±294 kcals) nearly doubled. Interestingly, early changes in REE demonstrated a moderate, positive correlation with rates of GWG later in pregnancy (r=0.528, p=0.052), suggesting that REE assessment early in pregnancy may help predict changes in GWG. Changes in macronutrients did not mediate the relationship between the intervention and GWG, nor did sleep mediate relationships between dietary intake and GWG. Future research evaluating REE and dietary composition throughout pregnancy may provide insight for appropriate GWG recommendations.
ContributorsVander Wyst, Kiley Bernhard (Author) / Whisner, Corrie M (Thesis advisor) / Reifsnider, Elizabeth G. (Committee member) / Petrov, Megan E (Committee member) / Buman, Matthew (Committee member) / Shaibi, Gabriel Q (Committee member) / Arizona State University (Publisher)
Created2019
153970-Thumbnail Image.png
Description
This study examines cognitive and motor function in typical older adults following acute exercise. Ten older adults (Mage = 65.1) completed a single session of assisted cycling (AC) (i.e., exercise accomplished through the use of a motor), voluntary cycling (VC) (self-selected cadence), and a no cycling (NC) control group.

This study examines cognitive and motor function in typical older adults following acute exercise. Ten older adults (Mage = 65.1) completed a single session of assisted cycling (AC) (i.e., exercise accomplished through the use of a motor), voluntary cycling (VC) (self-selected cadence), and a no cycling (NC) control group. These sessions were randomized and separated by approximately one week. Both ACT and VC groups rode a stationary bicycle for 30-minutes each session. These sessions were separated by at least two days. Participants completed cognitive testing that assessed information processing and set shifting and motor testing including gross and fine motor performance at the beginning and at the end of each session. Consistent with our hypothesis concerning manual dexterity, the results showed that manual dexterity improved following the ACT session more than the VC or NC sessions. Improvements in set shifting were also found for the ACT session but not for the VC or NC sessions. The results are interpreted with respect to improvements in neurological function in older adults following acute cycling exercise. These improvements are balance, manual dexterity, and set shifting which have a positive effects on activities of daily living; such as, decrease risk of falls, improve movements like eating and handwriting, and increase ability to multitask.
ContributorsSemken, Keith (Author) / Ringenbach, Shannon (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2015
154660-Thumbnail Image.png
Description
The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and

The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and to develop corresponding detection, prediction, and control strategies. In this highly interdisciplinary field, my research mainly concentrates on universal estimation schemes, physical controllability, as well as mechanisms behind extreme events and cascading failure for complex networked systems.

Revealing the underlying structure and dynamics of complex networked systems from observed data without of any specific prior information is of fundamental importance to science, engineering, and society. We articulate a Markov network based model, the sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator based on techniques including compressive sensing and K-means algorithm. It recovers the network structure of the original system and predicts its short-term or even long-term dynamical behavior for a large variety of representative dynamical processes on model and real-world complex networks.

One of the most challenging problems in complex dynamical systems is to control complex networks.

Upon finding that the energy required to approach a target state with reasonable precision

is often unbearably large, and the energy of controlling a set of networks with similar structural properties follows a fat-tail distribution, we identify fundamental structural ``short boards'' that play a dominant role in the enormous energy and offer a theoretical interpretation for the fat-tail distribution and simple strategies to significantly reduce the energy.

Extreme events and cascading failure, a type of collective behavior in complex networked systems, often have catastrophic consequences. Utilizing transportation and evolutionary game dynamics as prototypical

settings, we investigate the emergence of extreme events in simplex complex networks, mobile ad-hoc networks and multi-layer interdependent networks. A striking resonance-like phenomenon and the emergence of global-scale cascading breakdown are discovered. We derive analytic theories to understand the mechanism of

control at a quantitative level and articulate cost-effective control schemes to significantly suppress extreme events and the cascading process.
ContributorsChen, Yuzhong (Author) / Lai, Ying-Cheng (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2016
154137-Thumbnail Image.png
Description
The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can

The purpose of information source detection problem (or called rumor source detection) is to identify the source of information diffusion in networks based on available observations like the states of the nodes and the timestamps at which nodes adopted the information (or called infected). The solution of the problem can be used to answer a wide range of important questions in epidemiology, computer network security, etc. This dissertation studies the fundamental theory and the design of efficient and robust algorithms for the information source detection problem.

For tree networks, the maximum a posterior (MAP) estimator of the information source is derived under the independent cascades (IC) model with a complete snapshot and a Short-Fat Tree (SFT) algorithm is proposed for general networks based on the MAP estimator. Furthermore, the following possibility and impossibility results are established on the Erdos-Renyi (ER) random graph: $(i)$ when the infection duration $<\frac{2}{3}t_u,$ SFT identifies the source with probability one asymptotically, where $t_u=\left\lceil\frac{\log n}{\log \mu}\right\rceil+2$ and $\mu$ is the average node degree, $(ii)$ when the infection duration $>t_u,$ the probability of identifying the source approaches zero asymptotically under any algorithm; and $(iii)$ when infection duration $
In practice, other than the nodes' states, side information like partial timestamps may also be available. Such information provides important insights of the diffusion process. To utilize the partial timestamps, the information source detection problem is formulated as a ranking problem on graphs and two ranking algorithms, cost-based ranking (CR) and tree-based ranking (TR), are proposed. Extensive experimental evaluations of synthetic data of different diffusion models and real world data demonstrate the effectiveness and robustness of CR and TR compared with existing algorithms.
ContributorsZhu, Kai (Author) / Ying, Lei (Thesis advisor) / Lai, Ying-Cheng (Committee member) / Liu, Huan (Committee member) / Shakarian, Paulo (Committee member) / Arizona State University (Publisher)
Created2015
154503-Thumbnail Image.png
Description
PURPOSE: Lean hypertension (HTN) is characterized by a mechanistically different HTN when compared to obese HTN. The purpose of this study is to assess whether body phenotype influences blood pressure (BP) responses following both acute and chronic exercise. METHODS: Obese (body mass index (BMI) > 30 kg/m2) and

PURPOSE: Lean hypertension (HTN) is characterized by a mechanistically different HTN when compared to obese HTN. The purpose of this study is to assess whether body phenotype influences blood pressure (BP) responses following both acute and chronic exercise. METHODS: Obese (body mass index (BMI) > 30 kg/m2) and lean (BMI < 25 kg/m2) men with pre-hypertension (PHTN) (systolic BP (SBP) 120 - 139 or diastolic BP (DBP) 80 - 89 mm Hg) were asked to participate in a two-phase trial. Phase 1 assessed differences in post-exercise hypotension between groups in response to an acute exercise bout. Phase 2 consisted of a two-week aerobic exercise intervention at 65-70% of heart rate (HR) max on a cycle ergometer. Primary outcome measures were: brachial BP, central (aortic) BP, cardiac output (CO), and systemic vascular resistance (SVR) measured acutely after one exercise session and following two weeks of training. RESULTS: There were no differences between groups for baseline resting brachial BP, central BP, age, or VO2 peak (all P > 0.05). At rest, obese PHTN had greater CO compared to lean PHTN (6.3 ± 1 vs 4.7 ± 1 L/min-1, P = 0.005) and decreased SVR compared to lean PHTN (1218 ± 263 vs 1606 ± 444 Dyn.s/cm5, P = 0.003). Average 60-minute post-exercise brachial and central SBP reduced by 3 mm Hg in Lean PHTN in response to acute exercise (P < 0.005), while significantly increasing 4 mm Hg for brachial and 3 mm Hg for central SBP (P < 0.05). SVR had a significantly greater reduction following acute exercise in lean PHTN (-223 Dyn·s/cm5) compared to obese PHTN (-75 Dyn·s/cm5, P < 0.001). In lean subjects chronic training reduced brachial BP by 4 mm Hg and central BP by 3 mm Hg but training had no effect on the BP’s in obese subjects. Resting BP reduction in response to training was accompanied by reductions in SVR within lean (-169 Dyn·s/cm5, P < 0.001), while obese experienced increased SVR following training (47 Dyn·s/cm5, P < 0.001). CONCLUSION: Hemodynamic response to both acute and chronic exercise training differ between obese and lean individuals.
ContributorsZeigler, Zachary (Author) / Swan, Pamela (Thesis advisor) / Gaesser, Glenn (Committee member) / Buman, Matthew (Committee member) / Angadi, Siddhartha (Committee member) / Farouk, Mookadam (Committee member) / Arizona State University (Publisher)
Created2016
155010-Thumbnail Image.png
Description
Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot

Conductance fluctuations associated with quantum transport through quantumdot systems are currently understood to depend on the nature of the corresponding classical dynamics, i.e., integrable or chaotic. There are a couple of interesting phenomena about conductance fluctuation and quantum tunneling related to geometrical shapes of graphene systems. Firstly, in graphene quantum-dot systems, when a magnetic field is present, as the Fermi energy or the magnetic flux is varied, both regular oscillations and random fluctuations in the conductance can occur, with alternating transitions between the two. Secondly, a scheme based on geometrical rotation of rectangular devices to effectively modulate the conductance fluctuations is presented. Thirdly, when graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substantial strength can occur. In an open system such as a quantum dot, the interaction can induce spin polarization. Finally, a problem using graphene systems with electron-electron interactions described by the Hubbard Hamiltonian in the setting of resonant tunneling is investigated.

Another interesting problem in quantum transport is the effect of disorder or random impurities since it is inevitable in real experiments. At first, for a twodimensional Dirac ring, as the disorder density is systematically increased, the persistent current decreases slowly initially and then plateaus at a finite nonzero value, indicating remarkable robustness of the persistent currents, which cannot be discovered in normal metal and semiconductor rings. In addition, in a Floquet system with a ribbon structure, the conductance can be remarkably enhanced by onsite disorder.

Recent years have witnessed significant interest in nanoscale physical systems, such as semiconductor supperlattices and optomechanical systems, which can exhibit distinct collective dynamical behaviors. Firstly, a system of two optically coupled optomechanical cavities is considered and the phenomenon of synchronization transition associated with quantum entanglement transition is discovered. Another useful issue is nonlinear dynamics in semiconductor superlattices caused by its key potential application lies in generating radiation sources, amplifiers and detectors in the spectral range of terahertz. In such a system, transition to multistability, i.e., the emergence of multistability with chaos as a system parameter passes through a critical point, is found and argued to be abrupt.
ContributorsYing, Lei (Author) / Lai, Ying-Cheng (Thesis advisor) / Vasileska, Dragica (Committee member) / Chen, Tingyong (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2016
152481-Thumbnail Image.png
Description
The purpose of this study was to examine whether a workplace environmental intervention would improve work-related outcomes including productivity, presenteeism and cognition. The secondary aim was to investigate whether work-related outcomes are correlated to observed changes in sitting time, physical activity, and sleep. The study was introduced as part of

The purpose of this study was to examine whether a workplace environmental intervention would improve work-related outcomes including productivity, presenteeism and cognition. The secondary aim was to investigate whether work-related outcomes are correlated to observed changes in sitting time, physical activity, and sleep. The study was introduced as part of a naturalistic environmental change in which university staff and faculty were relocated into a new building (n=23). The comparison group consisted of university staff within the same college with no imminent plans to re-locate during the intervention period; there were no environmental changes to this workplace (n =10). Participants wore two behavioral monitoring devices, activPAL and GeneActiv, for 7 consecutive days at two time points (immediately prior and 16 weeks following the office relocation). Measures of productivity and presenteeism were obtained via four validated questionnaires and participants underwent cognitive performance testing. Baseline adjusted analysis of covariance statistical analyses were used to examine differences between groups in work-related outcomes. A residual analysis in regression was conducted to determine the differences between observed changes in sitting time, physical activity and sleep, and work-related outcomes. The results showed that a reduction in work hour sitting time was not detrimental to work related outcomes. Decreased sitting was observed to potentially improve presenteeism and absenteeism. Additionally, physical activity was shown to modestly improve productivity, presenteeism and absenteeism. Poor sleep patterns were associated with work impairment and increased absenteeism.
ContributorsPark, Anna (Author) / Buman, Matthew (Thesis advisor) / Crespo, Noe (Committee member) / Chisum, Jack (Committee member) / Arizona State University (Publisher)
Created2014
153737-Thumbnail Image.png
Description
Background and purpose: Regular physical activity (PA) provides benefits for cognitive health and helps to improve or maintain quality of life among older adults. Objective PA measures have been increasingly used to overcome limitations of self-report measures. The purpose of this study was to investigate the association of objectively measured

Background and purpose: Regular physical activity (PA) provides benefits for cognitive health and helps to improve or maintain quality of life among older adults. Objective PA measures have been increasingly used to overcome limitations of self-report measures. The purpose of this study was to investigate the association of objectively measured PA and sedentary time with cognitive function among older adults.

Methods: Participants were recruited from the parent REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. ActicalTM accelerometers provided estimates of PA variables, including moderate-to-vigorous PA (MVPA), high light PA (HLPA), low light PA (LLPA) and sedentary time, for 4-7 consecutive days. Prevalence and incidence of cognitive impairment were defined by the Six-Item Screener. Letter fluency, animal fluency, word list learning and Montreal Cognitive Assessment (orientation and recall) were conducted to assess executive function and memory.

Results: Of the 7,339 participants who provided accelerometer wear data > 4 days (70.1 ± 8.6 yr, 54.2% women, 31.7% African American), 320 participants exhibited impaired cognition. In cross-sectional analysis, participants in the highest MVPA% quartile had 39% lower odds of cognitive impairment than those in the lowest quartile (OR: 0.61, 95% C.I.: 0.39-0.95) after full adjustment. Further analysis shows most quartiles of MVPA% and HLPA% were significantly associated with executive function and memory (P<0.01). During 2.7 ± 0.5 years of follow-up, 3,385 participants were included in the longitudinal analysis, with 157 incident cases of cognitive impairment. After adjustments, participants in the highest MVPA% quartile had 51% lower hazards of cognitive impairment (HR: 0.49, 95% C.I.: 0.28-0.86). Additionally, MVPA% was inversely associated with change in memory z-scores (P<0.01), while the highest quartile of HLPA% was inversely associated with change in executive function and memory z-scores (P<0.01).

Conclusion: Higher levels of objectively measured MVPA% were independently associated with lower prevalence and incidence of cognitive impairment, and better memory and executive function in older adults. Higher levels of HLPA% were also independently associated with better memory and executive function. The amount of MVPA associated with lower risk of cognitive impairment (259 min/week) is >70% higher than the minimal amount of MVPA recommended by PA guidelines.
ContributorsZhu, Wenfei (Author) / Hooker, Steven P (Thesis advisor) / Wadley, Virginia (Committee member) / Ainsworth, Barbara (Committee member) / Der Ananian, Cheryl (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2015
153092-Thumbnail Image.png
Description
Research provides increasing support of self-worth, non-physical motives, and body image for predicting physical activity in women. However, no empirical tests of these associations have been conducted. Ecological momentary assessment (EMA) has been recognized as useful for understanding correlates of physical activity. This study tested the feasibility of a novel

Research provides increasing support of self-worth, non-physical motives, and body image for predicting physical activity in women. However, no empirical tests of these associations have been conducted. Ecological momentary assessment (EMA) has been recognized as useful for understanding correlates of physical activity. This study tested the feasibility of a novel EMA protocol and explored temporal relationships between daily self-worth and physical activity in middle-aged women. Women aged 35-64 years (N=63; M age=49.2±8.2 years) received text message prompts to an Internet-based mobile survey three times daily for 28 days. The survey assessed momentary activity, self-worth (knowledge, emotional, social, physical, general), and self-efficacy. Women concurrently wore an accelerometer on their non-dominant wrist. Feasibility was assessed via accelerometer wear-time estimates, survey completion rates, and participant feedback. Multilevel models examined the predictive influence of self-worth on daily activity counts. Self-efficacy was also tested due to known relationships with self-worth and physical activity in women. Wear time was high (952.92 ± 100.99 min per day), with only 141 observations lost to non-wear. However, 449 were lost to accelerometer malfunction. Women completed 80.8% of surveys. After excluding missing physical activity data, 67.5% of observations (N=3573) were analyzed. Although women thought the survey was easy to complete, perceptions of the accelerometer were mixed. Approximately 34% of the variance in daily counts was within individuals (ICC=0.66). Average self-efficacy (β=0.005, p=0.009), daily fluctuations in self-efficacy (β=0.001, p<0.001), and daily fluctuations in general self-worth (β=0.04, p=0.003) predicted daily activity. There were significant individual differences in relationships between daily fluctuations in emotional (β=0.006, p=0.02) and general self-worth (β=0.005, p=0.02) and daily activity. The use of text message prompts and an Internet-based mobile survey was feasible for conducting EMA in middle-aged women. Research identifying optimal methods of behavior monitoring in longitudinal studies is needed. Results provide support for small but significant associations among daily fluctuations in self-efficacy and general self-worth and daily activity in middle-aged women. The impact of emotional self-worth may differ across women. Further research examining the transient natures of self-efficacy and general self-worth, improving self-worth scales, and testing momentary strategies to increase women's self-worth and physical activity is warranted.
ContributorsEhlers, Diane K. (Author) / Huberty, Jennifer L (Thesis advisor) / Todd, Michael (Committee member) / Vreede, Gert-Jan de (Committee member) / Hooker, Steven (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2014
155170-Thumbnail Image.png
Description
PURPOSE: This study aimed to identify whether increased Pokémon GO use resulted in increased daily steps, compared to days when an individual did not play. In addition, this study examined Pokémon GO as a use case for for the study of gamification, particularly whether traditionally identified game mechanics in gamification

PURPOSE: This study aimed to identify whether increased Pokémon GO use resulted in increased daily steps, compared to days when an individual did not play. In addition, this study examined Pokémon GO as a use case for for the study of gamification, particularly whether traditionally identified game mechanics in gamification literature were successfully identified as elements players enjoy when playing Pokémon GO. METHODS: A mixed methods approach, with 17 participants taking part in a daily physical activity tracking study and 14 participants participating in semi-structured interviews. In the use study, participant steps were tracked for one week using the Apple Health Kit application, and participants were also asked to provide daily answers to a variety of questions assessing game preferences and daily use of Pokémon GO - using the application called PACO. The semi-structured interviews examined self-reported physical activity, and asked questions pertaining to use of Pokémon GO, such as motivation to play. RESULTS: Results assessed by t-test indicate a small but non-significant trend towards increased steps taken on days when a participant played vs. did not play (t(72)=- .56, p=.57, mplay=5,0153220, mnonplay=4,5152,959). This was confirmed with a mixed model test showing that when controlling for time and participant’s baseline level of steps, there was no significant effect on steps/day. Results from the daily surveys and also the semi-structured interviews, indicated that nostalgia (i.e., catching ones’ favorite childhood Pokémon), was a strong motivator for many to play the game, which was counter to theoretical expectations. In line with previous theory, results suggested that operant conditioning principles appeared to be at work in terms of fostering game play use. DISCUSSION: Results of this study, which was a primarily hypothesis generating endeavor, indicated possible trends toward increased steps on days when a person plays Pokémon G), but - with such a small sample, and short-term length of study - no firm conclusions can be drawn. Further, results indicate the particular value of nostalgia as a driver towards game play for Pokémon GO.
ContributorsBiel, Alexander M (Author) / Hekler, Eric (Thesis advisor) / Ainsworth, Barbara (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2016