Matching Items (82)
141208-Thumbnail Image.png
Description
Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as one effective method to reduce temperature and energy consumption in cities, its impacts on multi-dimensional environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a portfolio of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.
ContributorsYang, Jiachuan (Contributor) / Wang, Zhi-Hua (Correspondent) / Kaloush, Kamil (Contributor)
Created2015-06-11
137862-Thumbnail Image.png
Description
The purpose of my honors thesis project was to generate the tools needed for in vivo imaging by determining the optimal plasmid-fluorophore combination. To determine the optimal plasmid and fluorophore, asd plasmids were constructed with various promoters, origins of replications, and red fluorophores. The optimal asd plasmid for fluorescent in

The purpose of my honors thesis project was to generate the tools needed for in vivo imaging by determining the optimal plasmid-fluorophore combination. To determine the optimal plasmid and fluorophore, asd plasmids were constructed with various promoters, origins of replications, and red fluorophores. The optimal asd plasmid for fluorescent in vivo imaging was determined by the plasmid stability, growth rate, and growth phase dependence on fluorescent intensity. The end goal is to be able to use the asd plasmid in vaccine strains for the purpose of in vivo imaging of the recombinant attenuated Salmonella vaccine (RASV).
ContributorsEudy, L. Adam (Author) / Curtiss, Roy (Thesis director) / Roland, Kenneth (Committee member) / Forbes, Stephen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12