Matching Items (119)
190897-Thumbnail Image.png
Description
The research of alternative materials and new device architectures to exceed the limits of conventional silicon-based devices has been sparked by the persistent pursuit of semiconductor technology scaling. The development of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2), well-known member of the transition metal dichalcogenide (TMD) family, has made great

The research of alternative materials and new device architectures to exceed the limits of conventional silicon-based devices has been sparked by the persistent pursuit of semiconductor technology scaling. The development of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2), well-known member of the transition metal dichalcogenide (TMD) family, has made great strides towards ultrascaled two-dimensional (2D) field-effect-transistors (FETs). The scaling issues facing silicon-based complementary metal-oxide-semiconductor (CMOS) technologies can be solved by 2D FETs, which show extraordinary potential.This dissertation provides a comprehensive experimental analysis relating to improvements in p-type metal-oxide-semiconductor (PMOS) FETs with few-layer WSe2 and high-κ metal gate (HKMG) stacks. Compared to this works improved methods, standard metallization (more damaging to underlying channel) results in significant Fermi-level pinning, although Schottky barrier heights remain small (< 100 meV) when using high work function metals. Temperature-dependent analysis reveals a dominant contribution to contact resistance from the damaged channel access region. Thus, through less damaging metallization methods combined with strongly scaled HKMG stacks significant improvements were achieved in contact resistance and PMOS FET overall performance. A clean contact/channel interface was achieved through high-vacuum evaporation and temperature-controlled stepped deposition. Theoretical analysis using a Landauer transport adapted to WSe2 Schottky barrier FETs (SB-FETs) elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance towards the ultimate CMOS scaling limit. Next, this dissertation discusses how device electrical characteristics are affected by scaling of equivalent oxide thickness (EOT) and by adopting double-gate FET architectures, as well as how this might support CMOS scaling. An improved gate control over the channel is made possible by scaling EOT, improving on-off current ratios, carrier mobility, and subthreshold swing. This study also elucidates the impact of EOT scaling on FET gate hysteresis attributed to charge-trapping effects in high-κ-dielectrics prepared by atomic layer deposition (ALD). These developments in 2D FETs offer a compelling alternative to conventional silicon-based devices and a path for continued transistor scaling. This research contributes to ongoing efforts in 2D materials for future semiconductor technologies. Finally, this work introduces devices based on emerging Janus TMDs and bismuth oxyselenide (Bi2O2Se) layered semiconductors.
ContributorsPatoary, Md Naim Hossain (Author) / Sanchez Esqueda, Ivan (Thesis advisor) / Tongay, Sefaattin (Committee member) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
189347-Thumbnail Image.png
Description
Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging.

Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging. Moreover, there is no fixed framework to identify the doping concentration, which impedes their process integration for future commercialization. This work utilizes the Neutron Transmutation Doping technique to control the doping uniformly and precisely in TMDCs. Rhenium and Tin dopants are introduced in Tungsten- and Indium-based Chalcogenides, respectively. Fine-tuning over 0.001% doping level is achieved. Precise analytical techniques such as Gamma spectroscopy and Secondary Ion Mass Spectrometry are used to quantify ultra-low doping levels ranging from 0.005-0.01% with minimal error. Dopants in 2D TMDCs often exhibit a broad stokes-shifted emission, with high linewidths, due to extrinsic effects such as substrate disorder and surface adsorbates. A well-defined bound exciton emission induced by Rhenium dopants in monolayer WSe2 and WS2 at liquid nitrogen temperatures is reported along with specific annealing regimes to minimize the defects induced in the Neutron Transmutation process. This work demonstrates a framework for Neutron Doping in 2D materials, which can be a scalable process for controlling doping and doping-induced effects in 2D materials.
ContributorsLakhavade, Sushant Sambhaji (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2023
171943-Thumbnail Image.png
Description
In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast

In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast to TMDc, Janus monolayer consists of two different chalcogen atomic layers between which the transition metal layer is sandwiched. This structural asymmetry causes strain buildup or a vertically oriented electric field to form within the monolayer. The presence of strain brings questions about the materials' synthesis approach, particularly when strain begins to accumulate and whether it causes defects within monolayers.The initial research demonstrated that Janus materials could be synthesized at high temperatures inside a chemical vapor deposition (CVD) furnace. Recently, a new method (selective epitaxy atomic replacement - SEAR) for plasma-based room temperature Janus crystal synthesis was proposed. In this method etching and replacing top layer chalcogen atoms of the TMDc monolayer happens with reactive hydrogen and sulfur radicals. Based on Raman and photoluminescence studies, the SEAR method produces high-quality Janus materials. Another method used to create Janus materials was the pulsed laser deposition (PLD) technique, which utilizes the interaction of sulfur/selenium plume with monolayer to replace the top chalcogen atomic layer in a single step. The goal of this analysis is to characterize microscale defects that appear in 2D Janus materials after they are synthesized using SEAR and PLD techniques. Various microscopic techniques were used for this purpose, as well as to understand the mechanism of defect formation. The main mechanism of defect formation was proposed to be strain release phenomena. Furthermore, different chalcogen atom positions within the monolayer result in different types of defects, such as the appearance of cracks or wrinkles across monolayers. In addition to investigating sample topography, Kelvin probe force microscopy (KPFM) was used to examine its electrical properties to see if the formation of defects impacts work function. Further study directions have been suggested for identifying and characterizing defects and their formation mechanism in the Janus crystals to understand their fundamental properties.
ContributorsSinha, Shantanu (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2022
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
171653-Thumbnail Image.png
Description
Complex perovskite materials, including Ba(Zn1/3Ta2/3)O3 (BZT), are commonly used to make resonators and filters in communication systems because of their low dielectric loss and high-quality factors (Q). Transition metal additives are introduced (i.e., Ni2+, Co2+, Mn2+) to act as sintering agents and tune their temperature coefficient to zero or near-zero.

Complex perovskite materials, including Ba(Zn1/3Ta2/3)O3 (BZT), are commonly used to make resonators and filters in communication systems because of their low dielectric loss and high-quality factors (Q). Transition metal additives are introduced (i.e., Ni2+, Co2+, Mn2+) to act as sintering agents and tune their temperature coefficient to zero or near-zero. However, losses in these commercial dielectric materials at cryogenic temperatures increase markedly due to spin-excitation resulting from the presence of paramagnetic defects. Applying a large magnetic field (e.g., 5 Tesla) quenches these losses and has allowed the study of other loss mechanisms present at low temperatures. Work was performed on Fe3+ doped LaAlO3. At high magnetic fields, the residual losses versus temperature plots exhibit Debye peaks at ~40 K, ~75 K, and ~215 K temperature and can be tentatively associated with defect reactions O_i^x+V_O^x→O_i^'+V_O^•, Fe_Al^x+V_Al^"→Fe_Al^'+V_Al^' and Al_i^x+Al_i^(••)→〖2Al〗_i^•, respectively. Peaks in the loss tangent versus temperature graph of Zn-deficient BZT indicate a higher concentration of defects and appear to result from conduction losses.Guided by the knowledge gained from this study, a systematic study to develop high-performance microwave materials for ultra-high performance at cryogenic temperatures was performed. To this end, the production and characterization of perovskite materials that were either undoped or contained non-paramagnetic additives were carried out. Synthesis of BZT ceramic with over 98% theoretical density was obtained using B2O3 or BaZrO3 additives. At 4 K, the highest Q x f product of 283,000 GHz was recorded for 5% BaZrO3 doped BZT. A portable, inexpensive open-air spectrometer was designed, built, and tested to make the electron paramagnetic resonance (EPR) technique more accessible for high-school and university lab instruction. In this design, the sample is placed near a dielectric resonator and does not need to be enclosed in a cavity, as is used in commercial EPR spectrometers. Permanent magnets used produce fields up to 1500 G, enabling EPR measurements up to 3 GHz.
ContributorsGajare, Siddhesh Girish (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Tongay, Sefaattin (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2022
171428-Thumbnail Image.png
Description
Many important technologies, including electronics, computing, communications, optoelectronics, and sensing, are built on semiconductors. The band gap is a crucial factor in determining the electrical and optical properties of semiconductors. Beyond graphene, newly found two-dimensional (2D) materials have semiconducting bandgaps that range from the ultraviolet in hexagonal boron nitride to

Many important technologies, including electronics, computing, communications, optoelectronics, and sensing, are built on semiconductors. The band gap is a crucial factor in determining the electrical and optical properties of semiconductors. Beyond graphene, newly found two-dimensional (2D) materials have semiconducting bandgaps that range from the ultraviolet in hexagonal boron nitride to the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides (TMDs). These 2D materials were shown to have highly controllable bandgaps which can be controlled by alloying. Only a small number of TMDs and monochalcogenides have been alloyed, though, because alloying compromised the material's Van der Waals (Vdw) property and the stability of the host crystal lattice phase. Phase transition in 2D materials is an interesting phenomenon where work has been done only on few TMDs namely MoTe2, MoS2, TaS2 etc.In order to change the band gaps and move them towards the UV (ultraviolet) and IR (infrared) regions, this work has developed new 2D alloys in InSe by alloying them with S and Te at 10% increasing concentrations. As the concentration of the chalcogens (S and Te) increased past a certain point, a structural phase transition in the alloys was observed. However, pinpointing the exact concentration for phase change and inducing phase change using external stimuli will be a thing of the future. The resulting changes in the crystal structure and band gap were characterized using some basic characterization techniques like scanning electron microscopy (SEM), X-ray Diffraction (XRD), Raman and photoluminescence spectroscopy.
ContributorsYarra, Anvesh Sai (Author) / Tongay, Sefaattin (Thesis advisor) / Yang, Sui (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2022
168457-Thumbnail Image.png
Description
Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of

Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of the adult brain presumably to reduce damage. The subventricular zone (SVZ) niche contains neural progenitor cells (NPCs) that generate astrocytes, oligodendrocyte, and neuroblasts. Following TBI, the injury microenvironment secretes signaling molecules like stromal cell derived factor-1a (SDF-1a). SDF-1a gradients from the injury contribute to the redirection of neuroblasts from the SVZ towards the lesion which may differentiate into neurons and integrate into existing circuitry. This repair mechanism is transient and does not lead to complete recovery of damaged tissue. Further, the mechanism by which SDF-1a gradients reach SVZ cells is not fully understood. To prolong NPC recruitment to the injured brain, exogenous SDF-1a delivery strategies have been employed. Increases in cell recruitment following stroke, spinal cord injury, and TBI have been demonstrated following SDF-1a delivery. Exogenous delivery of SDF-1a is limited by its 28-minute half-life and clearance from the injury microenvironment. Biomaterials-based delivery improves stability of molecules like SDF-1a and offer control of its release. This dissertation investigates SDF-1a delivery strategies for neural regeneration in three ways: 1) elucidating the mechanisms of spatiotemporal SDF-1a signaling across the brain, 2) developing a tunable biomaterials system for SDF-1a delivery to the brain, 3) investigating SDF-1a delivery on SVZ-derived cell migration following TBI. Using in vitro, in vivo, and in silico analyses, autocrine/paracrine signaling was necessary to produce SDF-1a gradients in the brain. Native cell types engaged in autocrine/paracrine signaling. A microfluidics device generated injectable hyaluronic-based microgels that released SDF-1a peptide via enzymatic cleavage. Microgels (±SDF-1a peptide) were injected 7 days post-TBI in a mouse model and evaluated for NPC migration 7 days later using immunohistochemistry. Initial staining suggested complex presence of astrocytes, NPCs, and neuroblasts throughout the frontoparietal cortex. Advancement of chemokine delivery was demonstrated by uncovering endogenous chemokine propagation in the brain, generating new approaches to maximize chemokine-based neural regeneration.
ContributorsHickey, Kassondra (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Holloway, Julianne (Committee member) / Caplan, Michael (Committee member) / Brafman, David (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2021
168357-Thumbnail Image.png
Description
Thin film solar cells are based on polycrystalline materials that contain a high concentration of intrinsic and extrinsic defects. Improving the device efficiency in such systems relies on understanding the nature of defects - whether they are positive, negative, or neutral in their influence - and their sources in order

Thin film solar cells are based on polycrystalline materials that contain a high concentration of intrinsic and extrinsic defects. Improving the device efficiency in such systems relies on understanding the nature of defects - whether they are positive, negative, or neutral in their influence - and their sources in order to engineer optimized absorbers. Oftentimes, these are studied individually, as characterization techniques are limited in their ability to directly relate material properties in individual layers to their impact on the actual device performance. Expanding the tools available for increased understanding of materials and devices has been critical for reducing the translation time of laboratory-scale research to changes in commercial module manufacturing lines. The use of synchrotron X-ray fluorescence (XRF) paired with X-ray beam induced current and voltage (XBIC, XBIV respectively) has proven to be an effective technique for understanding the impact of material composition and inhomogeneity on solar cell device functioning. The combination of large penetration depth, small spot size, and high flux allows for the measurement of entire solar cell stacks with high spatial resolution and chemical sensitivity. In this work, I combine correlative XRF/XBIC/XBIV with other characterization approaches across varying length scales, such as micro-Raman spectroscopy and photoluminescence, to understand how composition influences device performance in thin films. The work described here is broken into three sections. Firstly, understanding the influence of KF post-deposition treatment (PDT) and the use of Ag-alloying to reduce defect density in the Ga-free material system, CuInSe2 (CIS). Next, applying a similar characterization workflow to industrially relevant Ga-containing Cu(In1-xGax)Se2 (CIGS) modules with Ag and KF-PDT. The influence of light soaking and dark heat exposure on the modules are also studied in detail. Results show that Ag used with KF-PDT in CIS causes undesirable cation ordering at the CdS interface and affects the device through increased potential fluctuations. The results also demonstrate the importance of tuning the concentration of KF-PDT used when intended to be used in Ag-alloyed devices. Commercially-processed modules with optimized Ag and KF concentrations are shown to have the device performance instead be dominated by variations in the CIGS composition itself. In particular, changes in Cu and Se concentrations are found to be most influential on the device response to accelerated stressors such as dark heat exposure and light soaking. In the final chapter, simulations of nano-scale XBIC and XBIV are done to contribute to the understanding of these measurements.
ContributorsNietzold, Tara (Author) / Bertoni, Mariana I. (Thesis advisor) / Holt, Martin (Committee member) / Shafarman, William N. (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2021
168425-Thumbnail Image.png
Description
The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common

The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common genetic abnormality associated with ALS. Typically a nuclear protein, ADAR2 was localized in cytoplasmic accumulations in postmortem tissue from C9orf72 ALS patients. The mislocalization of ADAR2 was confirmed using immunostaining in a C9orf72 mouse model and motor neurons differentiated from C9orf72 patient induced pluripotent stem cells. Notably, the cytoplasmic accumulation of ADAR2 coexisted in neurons with cytoplasmic accumulations of TAR DNA binding protein 43 (TDP-43). Interestingly, ADAR2 overexpression in mammalian cell lines induced nuclear depletion and cytoplasmic accumulation of TDP-43, reflective of the pathology observed in ALS patients. The mislocalization of TDP-43 was dependent on the catalytic activity of ADAR2 and the ability of TDP-43 to bind directly to inosine containing RNA. In addition, TDP-43 nuclear export was significantly elevated in cells with increased RNA editing. Together these results describe a novel cellular mechanism by which alterations in RNA editing drive the nuclear export of TDP-43 leading to its cytoplasmic mislocalization. Considering the contribution of cytoplasmic TDP-43 to the pathogenesis of ALS, these findings represent a novel understanding of how the formation of pathogenic cytoplasmic TDP-43 accumulations may be initiated. Further research exploring this mechanism will provide insights into opportunities for novel therapeutic interventions.
ContributorsMoore, Stephen Philip (Author) / Sattler, Rita (Thesis advisor) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Van Keuren-Jensen, Kendall (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2021
163463-Thumbnail Image.png
Description

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases such as Alzheimer’s Disease (AD). One such molecular signaling pathway that may link TBI to AD is necroptosis. Necroptosis is an atypical mode of cell death compared with traditional apoptosis, both of which have been demonstrated to be present post-TBI [4-6]. Necroptosis is initiated by tissue necrosis factor (TNF) signaling through the RIPK1/RIPK3/MLKL pathway, leading to cell failure and subsequent death. Prior studies in rodent TBI models report necroptotic activity acutely after injury, within 48 hours. Here, the study objective was to recapitulate prior data and characterize MLKL and RIPK1 cortical expression post-TBI with our lab’s controlled cortical impact mouse model. Using standard immunohistochemistry approaches, it was determined that the tissue sections acquired by prior lab members were of poor quality to conduct robust MLKL and RIPK1 immunostaining assessment. Therefore, the thesis focused on presenting the staining method completed. The discussion also expanded on expected results from these studies regarding the spatial distribution necroptotic signaling in this TBI model.

ContributorsHuber, Kristin (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05