Matching Items (102)
Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
171604-Thumbnail Image.png
Description
Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing

Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing rate or advanced functional intricacy. The gold standard treatment for skin wound healing is suturing. Light-activated tissue sealing is an appealing alternative to sutures as it seals the wound edges minimizing the risk of infection and scarring, especially when utilized along with biodegradable polymeric biomaterials in the wound bed. Silk fibroins can be used as a biodegradable biomaterial that possesses properties supporting cell migration and proliferation in the tissue it interacts with. In addition, histamine treatment is shown to have extensive effects on cellular functions promoting wound healing. Here, the evaluation of Laser-activated Sealants (LASE) consisting of silk fibroin films induced with Indocyanine Green dye in a wound sealed with laser in the presence of Histamine receptor agonists H1R, H2R and H4R take place. The results were evaluated using Trans-epidermal Water Loss (TEWL), histological and analytical techniques where immune cell biomarkers Arginase-1, Ly6G, iNOS, Alpha-SMA, Proliferating Cell Nuclear Antigen (PCNA), and E-Cadherin were used to study the activity of specific cells such as macrophages, neutrophils, and myofibroblasts that aid in wound healing. PBS was used as a control for histamine receptor agonists. It was found that TEWL increased when treated with H1 receptor agonists while decreasing significantly in H2R and H4R-treated wounds. Arginase-1 activity improved, while it displayed an inverse relationship compared to iNOS. H4R agonist escalated Alpha-SMA cells, while others did not have any significant difference. Ly6G activity depleted in all histamine agonists significantly, while PCNA and E-Cadherin failed to show a positive or negative effect.
ContributorsPatel, Dirghau Manishbhai (Author) / Rege, Kaushal (Thesis advisor) / Massia, Stephen (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2022
171472-Thumbnail Image.png
Description
The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime

The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime editing represents great promise in the design of new gene therapies and disease models where editing was previously not possible using current gene editing techniques. Despite advancements in genome modification technologies, parallel enrichment strategies of edited cells remain lagging behind in development. To this end, this project aimed to enhance prime editing using transient reporter for editing enrichment (TREE) technology to develop a method for the rapid generation of clonal isogenic cell lines for disease modeling. TREE uses an engineered BFP variant that upon a C-to-T conversion will convert to GFP after target modification. Using flow cytometry, this BFP-to-GFP conversion assay enables the isolation of edited cell populations via a fluorescent reporter of editing. Prime induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), pairs prime editing with TREE technology to efficiently enrich for prime edited cells. This investigation revealed PINE-TREE as an efficient editing and enrichment method compared to a conventional reporter of transfection (RoT) enrichment strategy. Here, PINE-TREE exhibited a significant increase in editing efficiencies of single nucleotide conversions, small insertions, and small deletions in multiple human cell types. Additionally, PINE-TREE demonstrated improved clonal cell editing efficiency in human induced pluripotent stem cells (hiPSCs). Most notably, PINE-TREE efficiently generated clonal isogenic hiPSCs harboring a mutation in the APOE gene for in vitro modeling of Alzheimer’s Disease. Collectively, results gathered from this study exhibited PINE-TREE as a valuable new tool in genetic engineering to accelerate the generation of clonal isogenic cell lines for applications in developmental biology, disease modeling, and drug screening.
ContributorsKostes, William Warner (Author) / Brafman, David (Thesis advisor) / Jacobs, Bertram (Committee member) / Lapinaite, Audrone (Committee member) / Tian, Xiaojun (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
171365-Thumbnail Image.png
Description
Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically

Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically approved to treat only 10 out of the greater than 200 known pathogenic human viruses. Additionally, as obligate intracellular parasites, many virus functions are intimately coupled with host cellular processes. As such, the development of a clinically relevant antiviral is challenged by the limited number of clear targets per virus and necessitates an extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. Therefore, a means to develop virus- or strain-specific antivirals without detailed insight into each idiosyncratic biochemical mechanism may aid in the development of antivirals against a larger swath of pathogens. Such an approach will tremendously benefit from having the specific molecular recognition of viral species as the lowest barrier. Here, I modify a nanobody (anti-green fluorescent protein) that specifically recognizes non-essential epitopes (glycoprotein M-pHluorin chimera) presented on the extra virion surface of a virus (Pseudorabies virus strain 486). The nanobody switches from having no inhibitory properties (tested up to 50 μM) to ∼3 nM IC50 in in vitro infectivity assays using porcine kidney (PK15) cells. The nanobody modifications use highly reliable bioconjugation to a three-dimensional wireframe deoxyribonucleic acid (DNA) origami scaffold. Mechanistic studies suggest that inhibition is mediated by the DNA origami scaffold bound to the virus particle, which obstructs the internalization of the viruses into cells, and that inhibition is enhanced by avidity resulting from multivalent virus and scaffold interactions. The assembled nanostructures demonstrate negligible cytotoxicity (<10 nM) and sufficient stability, further supporting their therapeutic potential. If translatable to other viral species and epitopes, this approach may open a new strategy that leverages existing infrastructures – monoclonal antibody development, phage display, and in vitro evolution - for rapidly developing novel antivirals in vivo.
ContributorsPradhan, Swechchha (Author) / Hariadi, Rizal (Thesis advisor) / Hogue, Ian (Committee member) / Varsani, Arvind (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2022
171382-Thumbnail Image.png
Description
Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human

Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human MPXV cases. MPXV has been named the most important orthopoxvirus to infect humans since the eradication of smallpox and has been the causative agent of the 2022 world-wide MPXV outbreak. Despite being highly pathogenic, MPXV contains a natural truncation at the N-terminus of its E3 homologue. Vaccinia virus (VACV) E3 protein has two domains: an N- terminus Z-form nucleic acid binding domain (Z-BD) and a C-terminus double stranded RNA binding domain (dsRBD). Both domains are required for pathogenesis, interferon (IFN) resistance, and protein kinase R (PKR) inhibition. The N-terminus is required for evasion of Z-DNA binding protein 1 (ZBP1)-dependent necroptosis. ZBP1 binding to Z- form deoxyribonucleic acid/ribonucleic acid (Z-DNA/RNA) leads to activation of receptor-interacting protein kinase 3 (RIPK3) leading to mixed lineage kinase domain- like (MLKL) phosphorylation, aggregation and cell death. This study investigated how different cell lines combat MPXV infection and how MPXV has evolved ways to circumvent the host response. MPXV is shown to inhibit necroptosis in L929 cells by degrading RIPK3 through the viral inducer of RIPK3 degradation (vIRD) and by inhibiting MLKL aggregation. Additionally, the data shows that IFN treatment efficiently inhibits MPXV replication in a ZBP1-, RIPK3-, and MLKL- dependent manner, but independent of necroptosis. Also, the data suggests that an IFN inducer with a pancaspase or proteasome inhibitor could potentially be a beneficial treatment against MPXV infections. Furthermore, it reveals a link between PKR and pathogen-induced necroptosis that has not been previously described.
ContributorsWilliams, Jacqueline (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2022
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
168457-Thumbnail Image.png
Description
Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of

Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of the adult brain presumably to reduce damage. The subventricular zone (SVZ) niche contains neural progenitor cells (NPCs) that generate astrocytes, oligodendrocyte, and neuroblasts. Following TBI, the injury microenvironment secretes signaling molecules like stromal cell derived factor-1a (SDF-1a). SDF-1a gradients from the injury contribute to the redirection of neuroblasts from the SVZ towards the lesion which may differentiate into neurons and integrate into existing circuitry. This repair mechanism is transient and does not lead to complete recovery of damaged tissue. Further, the mechanism by which SDF-1a gradients reach SVZ cells is not fully understood. To prolong NPC recruitment to the injured brain, exogenous SDF-1a delivery strategies have been employed. Increases in cell recruitment following stroke, spinal cord injury, and TBI have been demonstrated following SDF-1a delivery. Exogenous delivery of SDF-1a is limited by its 28-minute half-life and clearance from the injury microenvironment. Biomaterials-based delivery improves stability of molecules like SDF-1a and offer control of its release. This dissertation investigates SDF-1a delivery strategies for neural regeneration in three ways: 1) elucidating the mechanisms of spatiotemporal SDF-1a signaling across the brain, 2) developing a tunable biomaterials system for SDF-1a delivery to the brain, 3) investigating SDF-1a delivery on SVZ-derived cell migration following TBI. Using in vitro, in vivo, and in silico analyses, autocrine/paracrine signaling was necessary to produce SDF-1a gradients in the brain. Native cell types engaged in autocrine/paracrine signaling. A microfluidics device generated injectable hyaluronic-based microgels that released SDF-1a peptide via enzymatic cleavage. Microgels (±SDF-1a peptide) were injected 7 days post-TBI in a mouse model and evaluated for NPC migration 7 days later using immunohistochemistry. Initial staining suggested complex presence of astrocytes, NPCs, and neuroblasts throughout the frontoparietal cortex. Advancement of chemokine delivery was demonstrated by uncovering endogenous chemokine propagation in the brain, generating new approaches to maximize chemokine-based neural regeneration.
ContributorsHickey, Kassondra (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Holloway, Julianne (Committee member) / Caplan, Michael (Committee member) / Brafman, David (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2021
168582-Thumbnail Image.png
Description
Traditional public health strategies for assessing human behavior, exposure, and activity are considered resource-exhaustive, time-consuming, and expensive, warranting a need for alternative methods to enhance data acquisition and subsequent interventions. This dissertation critically evaluated the use of wastewater-based epidemiology (WBE) as an inclusive and non-invasive tool for conducting near real-time

Traditional public health strategies for assessing human behavior, exposure, and activity are considered resource-exhaustive, time-consuming, and expensive, warranting a need for alternative methods to enhance data acquisition and subsequent interventions. This dissertation critically evaluated the use of wastewater-based epidemiology (WBE) as an inclusive and non-invasive tool for conducting near real-time population health assessments. A rigorous literature review was performed to gauge the current landscape of WBE to monitor for biomarkers indicative of diet, as well as exposure to estrogen-mimicking endocrine disrupting (EED) chemicals via route of ingestion. Wastewater-derived measurements of phytoestrogens from August 2017 through July 2019 (n = 156 samples) in a small sewer catchment revealed seasonal patterns, with highest average per capita consumption rates in January through March of each year (2018: 7.0 ± 2.0 mg d-1; 2019: 8.2 ± 2.3 mg d-1) and statistically significant differences (p = 0.01) between fall and winter (3.4 ± 1.2 vs. 6.1 ± 2.9 mg d-1; p ≤ 0.01) and spring and summer (5.6 ± 2.1 vs. 3.4 ± 1.5 mg d-1; p ≤ 0.01). Additional investigations, including a human gut microbial composition analysis of community wastewater, were performed to support a methodological framework for future implementation of WBE to assess population-level dietary behavior. In response to the COVID-19 global pandemic, a high-frequency, high-resolution sample collection approach with public data sharing was implemented throughout the City of Tempe, Arizona, and analyzed for SARS-CoV-2 (E gene) from April 2020 through March 2021 (n = 1,556 samples). Results indicate early warning capability during the first wave (June 2020) compared to newly reported clinical cases (8.5 ± 2.1 days), later transitioning to a slight lagging indicator in December/January 2020-21 (-2.0 ± 1.4 days). A viral hotspot from within a larger catchment area was detected, prompting targeted interventions to successfully mitigate community spread; reinforcing the importance of sample collection within the sewer infrastructure. I conclude that by working in tandem with traditional approaches, WBE can enlighten a comprehensive understanding of population health, with methods and strategies implemented in this work recommended for future expansion to produce timely, actionable data in support of public health.
ContributorsBowes, Devin Ashley (Author) / Halden, Rolf U (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Varsani, Arvind (Committee member) / Whisner, Corrie (Committee member) / Arizona State University (Publisher)
Created2022
168425-Thumbnail Image.png
Description
The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common

The RNA editing enzyme adenosine deaminase acting on double stranded RNA 2 (ADAR2) converts adenosine into inosine in regions of double stranded RNA. Here, it was discovered that this critical function of ADAR2 was dysfunctional in amyotrophic lateral sclerosis (ALS) mediated by the C9orf72 hexanucleotide repeat expansion, the most common genetic abnormality associated with ALS. Typically a nuclear protein, ADAR2 was localized in cytoplasmic accumulations in postmortem tissue from C9orf72 ALS patients. The mislocalization of ADAR2 was confirmed using immunostaining in a C9orf72 mouse model and motor neurons differentiated from C9orf72 patient induced pluripotent stem cells. Notably, the cytoplasmic accumulation of ADAR2 coexisted in neurons with cytoplasmic accumulations of TAR DNA binding protein 43 (TDP-43). Interestingly, ADAR2 overexpression in mammalian cell lines induced nuclear depletion and cytoplasmic accumulation of TDP-43, reflective of the pathology observed in ALS patients. The mislocalization of TDP-43 was dependent on the catalytic activity of ADAR2 and the ability of TDP-43 to bind directly to inosine containing RNA. In addition, TDP-43 nuclear export was significantly elevated in cells with increased RNA editing. Together these results describe a novel cellular mechanism by which alterations in RNA editing drive the nuclear export of TDP-43 leading to its cytoplasmic mislocalization. Considering the contribution of cytoplasmic TDP-43 to the pathogenesis of ALS, these findings represent a novel understanding of how the formation of pathogenic cytoplasmic TDP-43 accumulations may be initiated. Further research exploring this mechanism will provide insights into opportunities for novel therapeutic interventions.
ContributorsMoore, Stephen Philip (Author) / Sattler, Rita (Thesis advisor) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Van Keuren-Jensen, Kendall (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2021
168280-Thumbnail Image.png
Description
Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start

Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start codon mutation leading to an N-terminal truncation of 37 amino acids. The VACV protein E3 consists of a dsRNA binding domain in its C-terminus which must be intact for pathogenicity in murine models and replication in cultured cells. The N-terminus of E3 contains a Z-form nucleic acid (ZNA) binding domain and is also required for pathogenicity in murine models. Poxviruses produce RNA transcripts that extend beyond the transcribed gene which can form double-stranded RNA (dsRNA). The innate immune system easily recognizes dsRNA through proteins such as protein kinase R (PKR). After comparing a vaccinia virus with a wild-type E3 protein (VACV WT) to one with an E3 N-terminal truncation of 37 amino acids (VACV E3Δ37N), phenotypic differences appeared in several cell lines. In HeLa cells and certain murine embryonic fibroblasts (MEFs), dsRNA recognition pathways such as PKR become activated during VACV E3Δ37N infections, unlike VACV WT. However, MPXV does not activate PKR in HeLa or MEF cells. Additional investigation determined that MPXV produces less dsRNA than VACV. VACV E3Δ37N was made more similar to MPXV by selecting mutants that produce less dsRNA. By producing less dsRNA, VACV E3Δ37N no longer activated PKR in HeLa or MEF cells, thus restoring the wild-type phenotype. Furthermore, in other cell lines such as L929 (also a murine fibroblast) VACV E3Δ37N, but not VACV WT infection leads to activation of DNA-dependent activator of IFN-regulatory factors (DAI) and induction of necroptotic cell death. The same low dsRNA mutants demonstrate that DAI activation and necroptotic induction is independent of classical dsRNA. Finally, investigations of spread in an animal model and replication in cell lines where both the PKR and DAI pathways are intact determined that inhibition of both pathways is required for VACV E3Δ37N to replicate.
ContributorsCotsmire, Samantha (Author) / Jacobs, Bertram L (Thesis advisor) / Varsani, Arvind (Committee member) / Hogue, Brenda (Committee member) / Haydel, Shelley (Committee member) / Arizona State University (Publisher)
Created2021