Matching Items (270)
128196-Thumbnail Image.png
Description

About 2.5 × 106 snapshots on microcrystals of photoactive yellow protein (PYP) from a recent serial femtosecond crystallographic (SFX) experiment were reanalyzed to maximum resolution. The resolution is pushed to 1.46 Å, and a PYP structural model is refined at that resolution. The result is compared to other PYP models determined

About 2.5 × 106 snapshots on microcrystals of photoactive yellow protein (PYP) from a recent serial femtosecond crystallographic (SFX) experiment were reanalyzed to maximum resolution. The resolution is pushed to 1.46 Å, and a PYP structural model is refined at that resolution. The result is compared to other PYP models determined at atomic resolution around 1 Å and better at the synchrotron. By comparing subtleties such as individual isotropic temperature factors and hydrogen bond lengths, we were able to assess the quality of the SFX data at that resolution. We also show that the determination of anisotropic temperature factor ellipsoids starts to become feasible with the SFX data at resolutions better than 1.5 Å.

ContributorsSchmidt, Marius (Author) / Pande, Kanupriya (Author) / Basu, Shibom (Author) / Tenboer, Jason (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05-15
128800-Thumbnail Image.png
Description

Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify

Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify the costs of analyses, and robust industrial platforms that are reproducible across laboratories. Presented here is an MS-based quantitative IGF1 assay with performance rating of >1,000 samples/day, and a capability of quantifying IGF1 point mutations and posttranslational modifications. The throughput of the IGF1 mass spectrometric immunoassay (MSIA) benefited from a simplified sample preparation step, IGF1 immunocapture in a tip format, and high-throughput MALDI-TOF MS analysis. The Limit of Detection and Limit of Quantification of the resulting assay were 1.5 μg/L and 5 μg/L, respectively, with intra- and inter-assay precision CVs of less than 10%, and good linearity and recovery characteristics. The IGF1 MSIA was benchmarked against commercially available IGF1 ELISA via Bland-Altman method comparison test, resulting in a slight positive bias of 16%. The IGF1 MSIA was employed in an optimized parallel workflow utilizing two pipetting robots and MALDI-TOF-MS instruments synced into one-hour phases of sample preparation, extraction and MSIA pipette tip elution, MS data collection, and data processing. Using this workflow, high-throughput IGF1 quantification of 1,054 human samples was achieved in approximately 9 hours. This rate of assaying is a significant improvement over existing MS-based IGF1 assays, and is on par with that of the enzyme-based immunoassays. Furthermore, a mutation was detected in ∼1% of the samples (SNP: rs17884626, creating an A→T substitution at position 67 of the IGF1), demonstrating the capability of IGF1 MSIA to detect point mutations and posttranslational modifications.

ContributorsOran, Paul (Author) / Trenchevska, Olgica (Author) / Nedelkov, Dobrin (Author) / Borges, Chad (Author) / Schaab, Matthew (Author) / Rehder, Douglas (Author) / Jarvis, Jason (Author) / Sherma, Nisha (Author) / Shen, Luhui (Author) / Krastins, Bryan (Author) / Lopez, Mary F. (Author) / Schwenke, Dawn (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Biodesign Institute (Contributor)
Created2014-03-24
128801-Thumbnail Image.png
Description

Cancer therapy selects for cancer cells resistant to treatment, a process that is fundamentally evolutionary. To what extent, however, is the evolutionary perspective employed in research on therapeutic resistance and relapse? We analyzed 6,228 papers on therapeutic resistance and/or relapse in cancers and found that the use of evolution terms

Cancer therapy selects for cancer cells resistant to treatment, a process that is fundamentally evolutionary. To what extent, however, is the evolutionary perspective employed in research on therapeutic resistance and relapse? We analyzed 6,228 papers on therapeutic resistance and/or relapse in cancers and found that the use of evolution terms in abstracts has remained at about 1% since the 1980s. However, detailed coding of 22 recent papers revealed a higher proportion of papers using evolutionary methods or evolutionary theory, although this number is still less than 10%. Despite the fact that relapse and therapeutic resistance is essentially an evolutionary process, it appears that this framework has not permeated research. This represents an unrealized opportunity for advances in research on therapeutic resistance.

ContributorsAktipis, C. Athena (Author) / Kwan, Sau (Author) / Johnson, Kathryn (Author) / Neuberg, Steven (Author) / Maley, Carlo C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-11-17
128816-Thumbnail Image.png
Description

To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results

To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results and clinical outcomes. We report quality control outcomes and nucleic acid yields of our RCC submissions (N=16) to The Cancer Genome Atlas (TCGA) project, as well as newer discovery platforms, by describing mass spectrometry analysis of albumin oxidation in plasma and 6 ChIP sequencing libraries generated from nephrectomy specimens after histone H3 lysine 36 trimethylation (H3K36me3) immunoprecipitation. From June 1, 2010, through January 1, 2013, we enrolled 328 patients with RCC. Our mean (SD) TCGA RNA integrity numbers (RINs) were 8.1 (0.8) for papillary RCC, with a 12.5% overall rate of sample disqualification for RIN <7. Banked plasma had significantly less albumin oxidation (by mass spectrometry analysis) than plasma kept at 25°C (P<.001). For ChIP sequencing, the FastQC score for average read quality was at least 30 for 91% to 95% of paired-end reads. In parallel, we analyzed frozen tissue by RNA sequencing; after genome alignment, only 0.2% to 0.4% of total reads failed the default quality check steps of Bowtie2, which was comparable to the disqualification ratio (0.1%) of the 786-O RCC cell line that was prepared under optimal RNA isolation conditions. The overall correlation coefficients for gene expression between Mayo Clinic vs TCGA tissues ranged from 0.75 to 0.82. These data support the generation of high-quality nucleic acids for genomic analyses from banked RCC. Importantly, the protocol does not interfere with routine clinical care. Collections over defined time points during disease treatment further enhance collaborative efforts to integrate genomic information with outcomes.

ContributorsHo, Thai H. (Author) / Nunez Nateras, Rafael (Author) / Yan, Huihuang (Author) / Park, Jin (Author) / Jensen, Sally (Author) / Borges, Chad (Author) / Lee, Jeong Heon (Author) / Champion, Mia D. (Author) / Tibes, Raoul (Author) / Bryce, Alan H. (Author) / Carballido, Estrella M. (Author) / Todd, Mark A. (Author) / Joseph, Richard W. (Author) / Wong, William W. (Author) / Parker, Alexander S. (Author) / Stanton, Melissa L. (Author) / Castle, Erik P. (Author) / Biodesign Institute (Contributor)
Created2015-07-16
128657-Thumbnail Image.png
Description

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and cooled to further understand how LULC change influences the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced the most significant LST changes during the study period are primarily on the outskirts of the Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and impervious surfaces from all other LULC types has been identified as the primary cause of the UHI effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat flux. We suggest that urban planners, decision-makers, and city managers formulate new policies and regulations that encourage residential, commercial, and industrial developers to include more vegetation when planning new construction.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / Wang, Zhi-Hua (Author) / Song, Jiyun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-26
135584-Thumbnail Image.png
Description
Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develo

Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develop alternative therapies to treat cancer. One such alternative therapy is a peptide-based therapeutic cancer vaccine. Therapeutic cancer vaccines enhance an individual's immune response to a specific tumor. They are capable of doing this through artificial activation of tumor specific CTLs (Cytotoxic T Lymphocytes). However, in order to artificially activate tumor specific CTLs, a patient must be treated with immunogenic epitopes derived from their specific cancer type. We have identified that the tumor associated antigen, TPD52, is an ideal target for a therapeutic cancer vaccine. This designation was due to the overexpression of TPD52 in a variety of different cancer types. In order to start the development of a therapeutic cancer vaccine for TPD52-related cancers, we have devised a two-step strategy. First, we plan to create a list of potential TPD52 epitopes by using epitope binding and processing prediction tools. Second, we plan to attempt to experimentally identify MHC class I TPD52 epitopes in vitro. We identified 942 potential 9 and 10 amino acid epitopes for the HLAs A1, A2, A3, A11, A24, B07, B27, B35, B44. These epitopes were predicted by using a combination of 3 binding prediction tools and 2 processing prediction tools. From these 942 potential epitopes, we selected the top 50 epitopes ranked by a combination of binding and processing scores. Due to the promiscuity of some predicted epitopes for multiple HLAs, we ordered 38 synthetic epitopes from the list of the top 50 epitope. We also performed a frequency analysis of the TPD52 protein sequence and identified 3 high volume regions of high epitope production. After the epitope predictions were completed, we proceeded to attempt to experimentally detected presented TPD52 epitopes. First, we successful transduced parental K562 cells with TPD52. After transduction, we started the optimization process for the immunoprecipitation protocol. The optimization of the immunoprecipitation protocol proved to be more difficult than originally believed and was the main reason that we were unable to progress past the transduction of the parental cells. However, we believe that we have identified the issues and will be able to complete the experiment in the coming months.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136176-Thumbnail Image.png
Description
Joseph Rotblat (1908-2005) was the only physicist to leave the Manhattan Project for moral reasons before its completion. He would spend the rest of his life advocating for nuclear disarmament. His activities for disarmament resulted in the formation, in 1957, of the Pugwash conferences, which emerged as the leading global

Joseph Rotblat (1908-2005) was the only physicist to leave the Manhattan Project for moral reasons before its completion. He would spend the rest of his life advocating for nuclear disarmament. His activities for disarmament resulted in the formation, in 1957, of the Pugwash conferences, which emerged as the leading global forum to advance limits on nuclear weapons during the Cold War. Rotblat's efforts, and the activities of Pugwash, resulted in both being awarded the Nobel Peace Prize in 1995. Rotblat is a central figure in the global history of resistance to the spread of nuclear weapons. He also was an important figure in the emergence, after World War II, of a counter-movement to introduce new social justifications for scientific research and new models for ethics and professionalism among scientists. Rotblat embodies the power of the individual scientist to say "no" and thus, at least individually, put limits of conscience on his or her scientific activity. This paper explores the political and ethical choices scientists make as part of their effort to behave responsibly and to influence the outcomes of their work. By analyzing three phases of Rotblat's life, I demonstrate how he pursued his ideal of beneficial science, or science that appears to benefit humanity. The three phases are: (1) his decision to leave the Manhattan Project in 1944, (2) his role in the creation of Pugwash in 1957 and his role in the rise of the organization into international prominence and (3) his winning the Nobel Peace Prize in 1995. These three phases of Rotblat's life provide a singular window of the history of nuclear weapons and the international movement for scientific responsibility in the 50 years since the bombing of Hiroshima in 1945. While this paper does not provide a complete picture of Rotblat's life and times, I argue that his experiences shed important light on the difficult question of the individual responsibility of scientists.
ContributorsEvans, Alison Dawn (Author) / Zachary, Gregg (Thesis director) / Hurlbut, Ben (Committee member) / Francis, Sybil (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2015-05
136177-Thumbnail Image.png
Description
The purpose of this study was to determine the ratio of vegetable to fruit incorporated during a fresh vegetable and/or fruit juice diet. Juicing is the process of extracting the liquid part of a plant, fruit, or vegetable. Food can be ground, pressed, and spun to separate the liquid from

The purpose of this study was to determine the ratio of vegetable to fruit incorporated during a fresh vegetable and/or fruit juice diet. Juicing is the process of extracting the liquid part of a plant, fruit, or vegetable. Food can be ground, pressed, and spun to separate the liquid from the pulp. A juice diet involves juicing and consuming a variety of vegetables and fruits. The primary objective of this study was to gather information about the ratio of vegetable to fruit incorporated in freshly made juices during a juice diet. Therefore, the study survey inquired about various topics related to ingredient ratio during a juice diet. The survey data allowed for examination of the relationships between ingredient ratio and certain variables (e.g. gender, age, length of time juicing, juice fast participation, health effects, etc.). The study participants were recruited using online social media. Facebook was the primary method for reaching the online juicing community. A written invitation was distributed in several health related Facebook groups encouraging any person with experience juicing to complete an anonymous survey. This post was also shared via Twitter and various health related websites. The study survey data was used to examine the relationships between ingredient ratio and specific variables. The survey data showed participants had varying levels of experience with juicing. The responses indicated many participants were familiar with juice fasting and many participants completed more than one juice fast. Based on the survey response data, the most common ratio of vegetable to fruit incorporated by the participants during a juice diet was 80% vegetable to 20% fruit. The majority of participants indicated daily consumption of freshly made juice containing 70% -100% vegetables. Based on the survey response data, beginner juicers may be less inclined to incorporate organic produce into their juice diet compared to advanced juicers. The majority of participants reported positive health benefits during a juice diet. Some of the positive health benefits indicated by participants include weight loss, increased energy, and a positive impact on disease symptoms. Some of the negative side effects experienced by participants during a juice diet include frequent urination, headache, and cravings. Cross tabulation calculations between the ratio of ingredients and several variables covered by the study survey demonstrated statistical significance (i.e. length of time juicing, frequency of drinking juice, juice fast participation, number of juice fasts completed, servings of vegetables/fruit in a juice, percent of organic vegetables/fruit used in a juice, perceived positive side effects, and perceived negative side effects). This study provided insight about the average ratio of vegetable to fruit incorporated by participants during a juice diet. When analyzing the data it is important to consider the survey data was self-reported. Therefore, every result and conclusion is based on the individual perceptions of the study participants. In future experimentation, the use of medical tests and blood work would be useful to determine the biological and biochemical effects of drinking raw vegetable and/or fruit juice on the human body.
ContributorsMata, Sara Ann (Author) / Mayol-Kreiser, Sandra (Thesis director) / Shepard, Christina (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
133471-Thumbnail Image.png
Description
Higher plant Rubisco activase (Rca) is a stromal ATPase responsible for reactivating Rubisco. It is a member of the AAA+ protein superfamily and is thought to assemble into closed-ring hexamers like other AAA+ proteins belonging to the classic clade. Progress towards modeling the interaction between Rca and Rubisco has been

Higher plant Rubisco activase (Rca) is a stromal ATPase responsible for reactivating Rubisco. It is a member of the AAA+ protein superfamily and is thought to assemble into closed-ring hexamers like other AAA+ proteins belonging to the classic clade. Progress towards modeling the interaction between Rca and Rubisco has been slow due to limited structural information on Rca. Previous efforts in the lab were directed towards solving the structure of spinach short-form Rca using X-ray crystallography, given that it had notably high thermostability in the presence of ATP-γS, an ATP analog. However, due to disorder within the crystal lattice, an atomic resolution structure could not be obtained, prompting us to move to negative stain electron microscopy (EM), with our long-term goal being the use of cryo-electron microscopy (cryo-EM) for atomic resolution structure determination. Thus far, we have screened different Rca constructs in the presence of ATP-γS, both the full-length β-isoform and truncations containing only the AAA+ domain. Images collected on preparations of the full-length protein were amorphous, whereas images of the AAA+ domain showed well-defined ring-like assemblies under some conditions. Procedural adjustments, such as the use of previously frozen protein samples, rapid dilution, and minimizing thawing time were shown to improve complex assembly. The presence of Mn2+ was also found to improve hexamer formation over Mg2+. Calculated class averages of the AAA+ Rca construct in the presence of ATP-γS indicated a lack of homogeneity in the assemblies, showing both symmetric and asymmetric hexameric rings. To improve structural homogeneity, we tested buffer conditions containing either ADP alone or different ratios of ATP-γS to ADP, though results did not show a significant improvement in homogeneity. Multiple AAA+ domain preparations were evaluated. Because uniform protein assembly is a major requirement for structure solution by cryo-EM, more work needs to be done on screening biochemical conditions to optimize homogeneity.
ContributorsHernandez, Victoria Joan (Author) / Wachter, Rebekka (Thesis director) / Chiu, Po-Lin (Committee member) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
141208-Thumbnail Image.png
Description
Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as one effective method to reduce temperature and energy consumption in cities, its impacts on multi-dimensional environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a portfolio of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.
ContributorsYang, Jiachuan (Contributor) / Wang, Zhi-Hua (Correspondent) / Kaloush, Kamil (Contributor)
Created2015-06-11