Matching Items (43)
Filtering by

Clear all filters

128963-Thumbnail Image.png
Description

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education.

Methods: In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson’s chi-square test, Student’s t-test, and Spearman’s correlation. Open-ended questions sought insight into perceived barriers and benefits.

Results: Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.

Conclusion: North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

ContributorsHidaka, Brandon H. (Author) / Asghar, Anila (Author) / Aktipis, C. Athena (Author) / Nesse, Randolph (Author) / Wolpaw, Terry M. (Author) / Skursky, Nicole K. (Author) / Bennett, Katelyn J. (Author) / Beyrouty, Matthew W. (Author) / Schwartz, Mark D. (Author) / Department of Psychology (Contributor)
Created2015-03-08
129061-Thumbnail Image.png
Description

Introduction: Abundance of immune cells has been shown to have prognostic and predictive significance in many tumor types. Beyond abundance, the spatial organization of immune cells in relation to cancer cells may also have significant functional and clinical implications. However there is a lack of systematic methods to quantify spatial associations

Introduction: Abundance of immune cells has been shown to have prognostic and predictive significance in many tumor types. Beyond abundance, the spatial organization of immune cells in relation to cancer cells may also have significant functional and clinical implications. However there is a lack of systematic methods to quantify spatial associations between immune and cancer cells.

Methods: We applied ecological measures of species interactions to digital pathology images for investigating the spatial associations of immune and cancer cells in breast cancer. We used the Morisita-Horn similarity index, an ecological measure of community structure and predator–prey interactions, to quantify the extent to which cancer cells and immune cells colocalize in whole-tumor histology sections. We related this index to disease-specific survival of 486 women with breast cancer and validated our findings in a set of 516 patients from different hospitals.

Results: Colocalization of immune cells with cancer cells was significantly associated with a disease-specific survival benefit for all breast cancers combined. In HER2-positive subtypes, the prognostic value of immune-cancer cell colocalization was highly significant and exceeded those of known clinical variables. Furthermore, colocalization was a significant predictive factor for long-term outcome following chemotherapy and radiotherapy in HER2 and Luminal A subtypes, independent of and stronger than all known clinical variables.

Conclusions: Our study demonstrates how ecological methods applied to the tumor microenvironment using routine histology can provide reproducible, quantitative biomarkers for identifying high-risk breast cancer patients. We found that the clinical value of immune-cancer interaction patterns is highly subtype-specific but substantial and independent to known clinicopathologic variables that mostly focused on cancer itself. Our approach can be developed into computer-assisted prediction based on histology samples that are already routinely collected.

ContributorsMaley, Carlo (Author) / Koelble, Konrad (Author) / Natrajan, Rachael (Author) / Aktipis, C. Athena (Author) / Yuan, Yinyin (Author) / Biodesign Institute (Contributor)
Created2015-09-22
129125-Thumbnail Image.png
Description

In 2013, the community of mathematical scientists and educators focused its collective attention on the mathematics of planet Earth. In the course of the year, a grassroots organization grew into an international partnership of more than 150 scientific societies, universities, research institutes, and organizations. The project, known as “Mathematics of

In 2013, the community of mathematical scientists and educators focused its collective attention on the mathematics of planet Earth. In the course of the year, a grassroots organization grew into an international partnership of more than 150 scientific societies, universities, research institutes, and organizations. The project, known as “Mathematics of Planet Earth 2013” (MPE2013), received the patronage of UNESCO and was a truly unique event. It brought the challenges facing our planet to the attention of the mathematics research community in numerous lectures, seminars, workshops, and special sessions at conferences of the professional societies; it sponsored the development of curriculum materials for all educational levels; it organized many outreach activities, including an international juried exhibit of virtual and physical displays for use in museums and schools; and it presented a series of public lectures by renowned scientists showing the public how mathematics contributes to our understanding of planet Earth, the nature of the challenges our planet is facing, and how mathematicians contribute to their solution. At the end of the year, MPE2013 morphed into “Mathematics of Planet Earth” (MPE).

ContributorsAnderies, John (Author) / Kaper, Hans G. (Author) / Shuckburgh, Emily F. (Author) / Zagaris, Antonios (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-01
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
128313-Thumbnail Image.png
Description

Climate change and its interactions with complex socioeconomic dynamics dictate the need for decision makers to move from incremental adaptation toward transformation as societies try to cope with unprecedented and uncertain change. Developing pathways toward transformation is especially difficult in regions with multiple contested resource uses and rights, with diverse

Climate change and its interactions with complex socioeconomic dynamics dictate the need for decision makers to move from incremental adaptation toward transformation as societies try to cope with unprecedented and uncertain change. Developing pathways toward transformation is especially difficult in regions with multiple contested resource uses and rights, with diverse decision makers and rules, and where high uncertainty is generated by differences in stakeholders’ values, understanding of climate change, and ways of adapting. Such a region is the Murray-Darling Basin, Australia, from which we provide insights for developing a process to address these constraints. We present criteria for sequencing actions along adaptation pathways: feasibility of the action within the current decision context, its facilitation of other actions, its role in averting exceedance of a critical threshold, its robustness and resilience under diverse and unexpected shocks, its effect on future options, its lead time, and its effects on equity and social cohesion. These criteria could potentially enable development of multiple stakeholder-specific adaptation pathways through a regional collective action process. The actual implementation of these multiple adaptation pathways will be highly uncertain and politically difficult because of fixity of resource-use rights, unequal distribution of power, value conflicts, and the likely redistribution of benefits and costs. We propose that the approach we outline for building resilient pathways to transformation is a flexible and credible way of negotiating these challenges.

ContributorsAbel, Nick (Author) / Wise, Russell M. (Author) / Colloff, Matthew J. (Author) / Walker, Brian H. (Author) / Butler, James R. A. (Author) / Ryan, Paul (Author) / Norman, Chris (Author) / Langston, Art (Author) / Anderies, John (Author) / Gorddard, Russell (Author) / Dunlop, Michael (Author) / O'Connell, Deborah (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016
128326-Thumbnail Image.png
Description

Globalization, the process by which local social-ecological systems (SESs) are becoming linked in a global network, presents policy scientists and practitioners with unique and difficult challenges. Although local SESs can be extremely complex, when they become more tightly linked in the global system, complexity increases very rapidly as multi-scale and

Globalization, the process by which local social-ecological systems (SESs) are becoming linked in a global network, presents policy scientists and practitioners with unique and difficult challenges. Although local SESs can be extremely complex, when they become more tightly linked in the global system, complexity increases very rapidly as multi-scale and multi-level processes become more important. Here, we argue that addressing these multi-scale and multi-level challenges requires a collection of theories and models. We suggest that the conceptual domains of sustainability, resilience, and robustness provide a sufficiently rich collection of theories and models, but overlapping definitions and confusion about how these conceptual domains articulate with one another reduces their utility. We attempt to eliminate this confusion and illustrate how sustainability, resilience, and robustness can be used in tandem to address the multi-scale and multi-level challenges associated with global change.

ContributorsAnderies, John (Author) / Folke, Carl (Author) / Walker, Brian (Author) / Ostrom, Elinor (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013
128114-Thumbnail Image.png
Description

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQ[subscript S]. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQ[subscript S] flux well (RMSE values of ∼ 30 W m[superscript −2]). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Oechel, Walter C. (Author) / Grimmond, Sue (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-27
128184-Thumbnail Image.png
Description

Social roles are thought to play an important role in determining the capacity for collective action in a community regarding the use of shared resources. Here we report on the results of a study using a behavioral experimental approach regarding the relationship between social roles and the performance of social-ecological

Social roles are thought to play an important role in determining the capacity for collective action in a community regarding the use of shared resources. Here we report on the results of a study using a behavioral experimental approach regarding the relationship between social roles and the performance of social-ecological systems. The computer-based irrigation experiment that was the basis of this study mimics the decisions faced by farmers in small-scale irrigation systems. In each of 20 rounds, which are analogous to growing seasons, participants face a two-stage commons dilemma. First they must decide how much to invest in the public infrastructure, e.g., canals and water diversion structures. Second, they must decide how much to extract from the water made available by that public infrastructure. Each round begins with a 60-second communication period before the players make their investment and extraction decisions. By analyzing the chat messages exchanged among participants during the communication stage of the experiment, we coded up to three roles per participant using the scheme of seven roles known to be important in the literature: leader, knowledge generator, connector, follower, moralist, enforcer, and observer. Our study supports the importance of certain social roles (e.g., connector) previously highlighted by several case study analyses. However, using qualitative comparative analysis we found that none of the individual roles was sufficient for groups to succeed, i.e., to reach a certain level of group production. Instead, we found that a combination of at least five roles was necessary for success. In addition, in the context of upstream-downstream asymmetry, we observed a pattern in which social roles assumed by participants tended to differ by their positions. Although our work generated some interesting insights, further research is needed to determine how robust our findings are to different action situations, such as biophysical context, social network, and resource uncertainty.

ContributorsPerez, Irene (Author) / Yu, David (Author) / Janssen, Marco (Author) / Anderies, John (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2015
128244-Thumbnail Image.png
Description

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data.

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data. This study was motivated by nine case studies that appeared to be inconsistent with the expectation that the presence of Ostrom’s Design Principles increases the likelihood of successful common pool resource governance. These cases highlight the limitations of coding and analyzing Large-N case studies.

We examine two issues: 1) the challenge of missing data and 2) potential approaches that rely on context (which is often lost in the coding process) to address inconsistencies between empirical observations theoretical predictions. For the latter, we conduct a post-hoc qualitative analysis of a large-N comparative study to explore 2 types of inconsistencies: 1) cases where evidence for nearly all design principles was found, but available evidence led to the assessment that the CPR system was unsuccessful and 2) cases where the CPR system was deemed successful despite finding limited or no evidence for design principles. We describe inherent challenges to large-N comparative analysis to coding complex and dynamically changing common pool resource systems for the presence or absence of design principles and the determination of “success”. Finally, we illustrate how, in some cases, our qualitative analysis revealed that the identity of absent design principles explained inconsistencies hence de-facto reconciling such apparent inconsistencies with theoretical predictions. This analysis demonstrates the value of combining quantitative and qualitative analysis, and using mixed-methods approaches iteratively to build comprehensive methodological and theoretical approaches to understanding common pool resource governance in a dynamically changing context.

ContributorsBarnett, Allain (Author) / Baggio, Jacopo (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Perez Ibarra, Irene (Author) / Rubinos, Cathy (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
128247-Thumbnail Image.png
Description

Institutions, the rules of the game that shape repeated human interactions, clearly play a critical role in helping groups avoid the inefficient use of shared resources such as fisheries, freshwater, and the assimilative capacity of the environment. Institutions, however, are intimately intertwined with the human, social, and biophysical context within

Institutions, the rules of the game that shape repeated human interactions, clearly play a critical role in helping groups avoid the inefficient use of shared resources such as fisheries, freshwater, and the assimilative capacity of the environment. Institutions, however, are intimately intertwined with the human, social, and biophysical context within which they operate. Scholars typically are careful to take this context into account when studying institutions and Ostrom’s Institutional Design Principles are a case in point. Scholars have tested whether Ostrom’s Design Principles, which specify broad relationships between institutional arrangements and context, actually support successful governance of shared resources. This article further contributes to this line of research by leveraging the notion of institutional design to outline a research trajectory focused on coupled infrastructure systems in which institutions are seen as one class of infrastructure among many that dynamically interact to produce outcomes over time.

ContributorsAnderies, John (Author) / Janssen, Marco (Author) / Schlager, Edella (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-23