Matching Items (39)
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
129438-Thumbnail Image.png
Description

Microbes in the gastrointestinal tract are under selective pressure to manipulate host eating behavior to increase their fitness, sometimes at the expense of host fitness. Microbes may do this through two potential strategies: (i) generating cravings for foods that they specialize on or foods that suppress their competitors, or (ii)

Microbes in the gastrointestinal tract are under selective pressure to manipulate host eating behavior to increase their fitness, sometimes at the expense of host fitness. Microbes may do this through two potential strategies: (i) generating cravings for foods that they specialize on or foods that suppress their competitors, or (ii) inducing dysphoria until we eat foods that enhance their fitness. We review several potential mechanisms for microbial control over eating behavior including microbial influence on reward and satiety pathways, production of toxins that alter mood, changes to receptors including taste receptors, and hijacking of the vagus nerve, the neural axis between the gut and the brain. We also review the evidence for alternative explanations for cravings and unhealthy eating behavior. Because microbiota are easily manipulatable by prebiotics, probiotics, antibiotics, fecal transplants, and dietary changes, altering our microbiota offers a tractable approach to otherwise intractable problems of obesity and unhealthy eating.

ContributorsAlcock, Joe (Author) / Maley, Carlo C. (Author) / Aktipis, C. Athena (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-10-01
128691-Thumbnail Image.png
Description

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean.

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.

ContributorsWu, Jieying (Author) / Gao, Weimin (Author) / Johnson, Roger (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-11
128963-Thumbnail Image.png
Description

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education.

Methods: In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson’s chi-square test, Student’s t-test, and Spearman’s correlation. Open-ended questions sought insight into perceived barriers and benefits.

Results: Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.

Conclusion: North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

ContributorsHidaka, Brandon H. (Author) / Asghar, Anila (Author) / Aktipis, C. Athena (Author) / Nesse, Randolph (Author) / Wolpaw, Terry M. (Author) / Skursky, Nicole K. (Author) / Bennett, Katelyn J. (Author) / Beyrouty, Matthew W. (Author) / Schwartz, Mark D. (Author) / Department of Psychology (Contributor)
Created2015-03-08
129061-Thumbnail Image.png
Description

Introduction: Abundance of immune cells has been shown to have prognostic and predictive significance in many tumor types. Beyond abundance, the spatial organization of immune cells in relation to cancer cells may also have significant functional and clinical implications. However there is a lack of systematic methods to quantify spatial associations

Introduction: Abundance of immune cells has been shown to have prognostic and predictive significance in many tumor types. Beyond abundance, the spatial organization of immune cells in relation to cancer cells may also have significant functional and clinical implications. However there is a lack of systematic methods to quantify spatial associations between immune and cancer cells.

Methods: We applied ecological measures of species interactions to digital pathology images for investigating the spatial associations of immune and cancer cells in breast cancer. We used the Morisita-Horn similarity index, an ecological measure of community structure and predator–prey interactions, to quantify the extent to which cancer cells and immune cells colocalize in whole-tumor histology sections. We related this index to disease-specific survival of 486 women with breast cancer and validated our findings in a set of 516 patients from different hospitals.

Results: Colocalization of immune cells with cancer cells was significantly associated with a disease-specific survival benefit for all breast cancers combined. In HER2-positive subtypes, the prognostic value of immune-cancer cell colocalization was highly significant and exceeded those of known clinical variables. Furthermore, colocalization was a significant predictive factor for long-term outcome following chemotherapy and radiotherapy in HER2 and Luminal A subtypes, independent of and stronger than all known clinical variables.

Conclusions: Our study demonstrates how ecological methods applied to the tumor microenvironment using routine histology can provide reproducible, quantitative biomarkers for identifying high-risk breast cancer patients. We found that the clinical value of immune-cancer interaction patterns is highly subtype-specific but substantial and independent to known clinicopathologic variables that mostly focused on cancer itself. Our approach can be developed into computer-assisted prediction based on histology samples that are already routinely collected.

ContributorsMaley, Carlo (Author) / Koelble, Konrad (Author) / Natrajan, Rachael (Author) / Aktipis, C. Athena (Author) / Yuan, Yinyin (Author) / Biodesign Institute (Contributor)
Created2015-09-22
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
128771-Thumbnail Image.png
Description

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE.

ContributorsWang, Jiangxin (Author) / Shi, Xu (Author) / Johnson, Roger (Author) / Kelbauskas, Laimonas (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-08
128114-Thumbnail Image.png
Description

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQ[subscript S]. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQ[subscript S] flux well (RMSE values of ∼ 30 W m[superscript −2]). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Oechel, Walter C. (Author) / Grimmond, Sue (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-27
128276-Thumbnail Image.png
Description

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land–atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land–atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.

ContributorsSong, Jiyun (Author) / Wang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24