Matching Items (87)
152061-Thumbnail Image.png
Description
Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit

Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit well with other work focusing on attention during and after category learning. The current work attempted to merge these two areas of by creating a category structure with the best chance to detect generalization. Participants learned order level bird categories and family level wading bird categories. Then participants completed multiple measures to test generalization to old wading bird categories, new wading bird categories, owl and raptor categories, and lizard categories. As expected, the generalization measures converged on a single overall pattern of generalization. No generalization was found, except for already learned categories. This pattern fits well with past work on generalization within a hierarchy, but do not fit well with theories of dimensional attention. Reasons why these findings do not match are discussed, as well as directions for future research.
ContributorsLancaster, Matthew E (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / Chi, Michelene (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
151930-Thumbnail Image.png
Description
Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning occurs. The goal of the present set of experiments is to determine if visual sequential information is learned in terms of abstract rules or stimulus-specific details. Two experiments test the extent to which interaction with the stimuli can influence the information that is encoded by the learner. The results of both experiments support the claim that stimulus and domain specific details directly shape what is learned, through a process of tuning the neuromuscular systems involved in the interaction between the learner and the materials.
ContributorsMarsh, Elizabeth R (Author) / Glenberg, Arthur M. (Thesis advisor) / Amazeen, Eric (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
151959-Thumbnail Image.png
Description
Type 1 Diabetes Mellitus (T1DM) is a chronic disease that requires maintaining tight metabolic control through complex behavioral and pharmaceutical regimens. Subtle cognitive impairments and stress response dysregulation may partially account for problems negotiating life changes and maintaining treatment adherence among emerging adults. The current study examined whether young adults

Type 1 Diabetes Mellitus (T1DM) is a chronic disease that requires maintaining tight metabolic control through complex behavioral and pharmaceutical regimens. Subtle cognitive impairments and stress response dysregulation may partially account for problems negotiating life changes and maintaining treatment adherence among emerging adults. The current study examined whether young adults with T1DM physiologically respond to psychological stress in a dysregulated manner compared to non-diabetic peers, and if such individuals also demonstrated greater cognitive declines following psychological stress. Participants included 23 young adults with T1DM and 52 non-diabetic controls yoked to T1DM participants based on age, gender, ethnicity, participant education, and maternal education. Participants completed a laboratory-based social stressor, pre- and post-stressor neurocognitive testing, provided fingerstick blood spots (for glucose levels) and salivary samples (for cortisol levels) at five points across the protocol, and completed psychosocial questionnaires. Related measures ANOVAs were conducted to assess differences between T1DM participants and the average of yoked controls on cortisol and cognitive outcomes. Results demonstrated that differences in cortisol reactivity were dependent on T1DM participants' use of insulin pump therapy (IPT). T1DM participants not using IPT demonstrated elevated cortisol reactivity compared to matched controls. There was no difference in cortisol reactivity between the T1DM participants on IPT and matched controls. On the Stroop task, performance patterns did not differ between participants with T1DM not on IPT and matched controls. The performance of participants with T1DM on IPT slightly improved following the stressor and matched controls slightly worsened. On the Trail Making Test, the performance of participants with T1DM was not different following the stressor whereas participants without T1DM demonstrated a decline following the stressor. Participants with and without T1DM did not differ in patterns of performance on the Rey Verbal Learning Task, Sustained Attention Allocation Task, Controlled Oral Word Association Task, or overall cortisol output across participation. The results of this study are suggestive of an exaggerated cortisol response to psychological stress in T1DM and indicate potential direct and indirect protective influences of IPT.
ContributorsMarreiro, Catherine (Author) / Luecken, Linda (Thesis advisor) / Doane, Leah (Thesis advisor) / Barrera, Manuel (Committee member) / Aiken, Leona (Committee member) / Arizona State University (Publisher)
Created2013
152678-Thumbnail Image.png
Description
Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of

Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of clips from novel films and are then tasked to complete a recognition test containing frames from the previously viewed films and difficult foil frames. Recognition performance is good when foils are taken from other parts of the same film (Experiment 1), but degrades greatly when foils are taken from unseen gaps from within the viewed footage (Experiments 3 and 4). Removing all non-target frames had a serious effect on recognition performance (Experiment 2). Across all experiments, presenting the films as a random series of clips seemed to have no effect on recognition performance. Patterns of accuracy and response latency in Experiments 3 and 4 appear to be a result of a serial-search process. It is concluded that visual representations of dynamic scenes may be stored as units of events, and participant's old
ew judgments of individual frames were better characterized by a cued-recall paradigm than traditional recognition judgments.
ContributorsFerguson, Ryan (Author) / Homa, Donald (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
152920-Thumbnail Image.png
Description
Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / McBeath, Michael (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
153461-Thumbnail Image.png
Description
Methods to test hypotheses of mediated effects in the pretest-posttest control group design are understudied in the behavioral sciences (MacKinnon, 2008). Because many studies aim to answer questions about mediating processes in the pretest-posttest control group design, there is a need to determine which model is most appropriate to

Methods to test hypotheses of mediated effects in the pretest-posttest control group design are understudied in the behavioral sciences (MacKinnon, 2008). Because many studies aim to answer questions about mediating processes in the pretest-posttest control group design, there is a need to determine which model is most appropriate to test hypotheses about mediating processes and what happens to estimates of the mediated effect when model assumptions are violated in this design. The goal of this project was to outline estimator characteristics of four longitudinal mediation models and the cross-sectional mediation model. Models were compared on type 1 error rates, statistical power, accuracy of confidence interval coverage, and bias of parameter estimates. Four traditional longitudinal models and the cross-sectional model were assessed. The four longitudinal models were analysis of covariance (ANCOVA) using pretest scores as a covariate, path analysis, difference scores, and residualized change scores. A Monte Carlo simulation study was conducted to evaluate the different models across a wide range of sample sizes and effect sizes. All models performed well in terms of type 1 error rates and the ANCOVA and path analysis models performed best in terms of bias and empirical power. The difference score, residualized change score, and cross-sectional models all performed well given certain conditions held about the pretest measures. These conditions and future directions are discussed.
ContributorsValente, Matthew John (Author) / MacKinnon, David (Thesis advisor) / West, Stephen (Committee member) / Aiken, Leona (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2015
153391-Thumbnail Image.png
Description
Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS)

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.
ContributorsMistler, Stephen (Author) / Enders, Craig K. (Thesis advisor) / Aiken, Leona (Committee member) / Levy, Roy (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2015
150765-Thumbnail Image.png
Description
The purpose of this study was to examine under which conditions "good" data characteristics can compensate for "poor" characteristics in Latent Class Analysis (LCA), as well as to set forth guidelines regarding the minimum sample size and ideal number and quality of indicators. In particular, we studied to which extent

The purpose of this study was to examine under which conditions "good" data characteristics can compensate for "poor" characteristics in Latent Class Analysis (LCA), as well as to set forth guidelines regarding the minimum sample size and ideal number and quality of indicators. In particular, we studied to which extent including a larger number of high quality indicators can compensate for a small sample size in LCA. The results suggest that in general, larger sample size, more indicators, higher quality of indicators, and a larger covariate effect correspond to more converged and proper replications, as well as fewer boundary estimates and less parameter bias. Based on the results, it is not recommended to use LCA with sample sizes lower than N = 100, and to use many high quality indicators and at least one strong covariate when using sample sizes less than N = 500.
ContributorsWurpts, Ingrid Carlson (Author) / Geiser, Christian (Thesis advisor) / Aiken, Leona (Thesis advisor) / West, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150478-Thumbnail Image.png
Description
Family plays an important yet understudied role in the development of psychopathology during childhood, particularly for children at developmental risk. Indeed, much of the research on families has actually concentrated more on risk processes in individual family members or within-family subsystems. In general, important and complex associations have been found

Family plays an important yet understudied role in the development of psychopathology during childhood, particularly for children at developmental risk. Indeed, much of the research on families has actually concentrated more on risk processes in individual family members or within-family subsystems. In general, important and complex associations have been found among family-related constructs such as marital conflict, parent-child relationships, parental depression, and parenting stress, which have in turn been found to contribute to the emergence of children's behavioral problems. Research has begun to emerge that certain family system constructs, such as cohesion, organization, and control may influence children's development, but this research has been limited by a focus on parent-reports of family functioning, rather than utilizing observational methods. With notable exceptions, there is almost no observational research examining families of children at developmental risk. This study examined the longitudinal relations among family risk and family system constructs, as well as how family systems constructs mediated the relations between family risk and child outcome. Further, the study examined how developmental risk moderated these relations. The sample followed 242 families of children with and without developmental risk across the transition-to-school period. Family risk factors were assessed at 5 years, using parental reports of symptomatology, parenting stress, and marital adjustment, and observational assessments of the parent-child relationship. Family system constructs (cohesion, warmth, conflict, organization, control) were measured at age 6 using structured observations of the entire family playing a board game. Child behavior problems and social competence were assessed at age 7. Results indicated that families of children with developmental delays did not differ from families of typically developing children on the majority of family system attributes. Cohesion and organization mediated the relations between specific family risk factors and social competence for all families. For families of typically developing children only, higher levels of control were associated with more behavior problems and less social competence. These findings underscore the importance of family-level assessment in understanding the development of psychopathology. Important family effects on children's social competence were found, although the pathways among family risk and family systems attributes are complex.
ContributorsGerstein, Emily Davis (Author) / Crnic, Keith A (Thesis advisor) / Aiken, Leona (Committee member) / Bradley, Robert (Committee member) / Gonzales, Nancy (Committee member) / Arizona State University (Publisher)
Created2012
153814-Thumbnail Image.png
Description
The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a

The current work investigated the emergence of leader-follower roles during social motor coordination. Previous research has presumed a leader during coordination assumes a spatiotemporally advanced position (e.g., relative phase lead). While intuitive, this definition discounts what role-taking implies. Leading and following is defined as one person (or limb) having a larger influence on the motor state changes of another; the coupling is asymmetric. Three experiments demonstrated asymmetric coupling effects emerge when task or biomechanical asymmetries are imputed between actors. Participants coordinated in-phase (Ф =0o) swinging of handheld pendulums, which differed in their uncoupled eigenfrequencies (frequency detuning). Coupling effects were recovered through phase-amplitude modeling. Experiment 1 examined leader-follower coupling during a bidirectional task. Experiment 2 employed an additional coupling asymmetry by assigning an explicit leader and follower. Both experiment 1 and 2 demonstrated asymmetric coupling effects with increased detuning. In experiment 2, though, the explicit follower exhibited a phase lead in nearly all conditions. These results confirm that coupling direction was not determined strictly by relative phasing. A third experiment examined the question raised by the previous two, which is how could someone follow from ahead (i.e., phase lead in experiment 2). This was tested using a combination of frequency detuning and amplitude asymmetry requirements (e.g., 1:1 or 1:2 & 2:1). Results demonstrated larger amplitude movements drove the coupling towards the person with the smaller amplitude; small amplitude movements exhibited a phase lead, despite being a follower in coupling terms. These results suggest leader-follower coupling is a general property of social motor coordination. Predicting when such coupling effects occur is emphasized by the stability reducing effects of coordinating asymmetric components. Generally, the implication is role-taking is an emergent strategy of dividing up coordination stabilizing efforts unequally between actors (or limbs).
ContributorsFine, Justin (Author) / Amazeen, Eric L. (Thesis advisor) / Amazeen, Polemnia G. (Committee member) / Brewer, Gene (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2015