Matching Items (220)
150433-Thumbnail Image.png
Description

The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements

The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements to both testing methods were made. Additionally, test results of cylindrical testing were correlated with the results from identical materials tested by the Guarded Hot&ndashPlate; method, which uses flat plate specimens. In validating the enhancements made to the Guarded Hot&ndashPlate; and Cylindrical Specimen methods, 23 tests were ran on five different materials. The percent difference shown for the Guarded Hot&ndashPlate; method was less than 1%. This gives strong evidence that the enhanced Guarded Hot-Plate apparatus in itself is now more accurate for measuring thermal conductivity. The correlation between the thermal conductivity values of the Guarded Hot&ndashPlate; to those of the enhanced Cylindrical Specimen method was excellent. The conventional concrete mixture, due to much higher thermal conductivity values compared to the other mixtures, yielded a P&ndashvalue; of 0.600 which provided confidence in the performance of the enhanced Cylindrical Specimen Apparatus. Several recommendations were made for the future implementation of both test methods. The work in this study fulfills the research community and industry desire for a more streamlined, cost effective, and inexpensive means to determine the thermal conductivity of various civil engineering materials.

ContributorsMorris, Derek (Author) / Kaloush, Kamil (Thesis advisor) / Mobasher, Barzin (Committee member) / Phelan, Patrick E (Committee member) / Arizona State University (Publisher)
Created2011
150987-Thumbnail Image.png
Description
In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time
ContributorsAn, Ho Geun (Author) / Yau, Sik-Sang (Thesis advisor) / Huang, Dijiang (Committee member) / Ahn, Gail-Joon (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2012
150827-Thumbnail Image.png
Description
In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more

In modern healthcare environments, there is a strong need to create an infrastructure that reduces time-consuming efforts and costly operations to obtain a patient's complete medical record and uniformly integrates this heterogeneous collection of medical data to deliver it to the healthcare professionals. As a result, healthcare providers are more willing to shift their electronic medical record (EMR) systems to clouds that can remove the geographical distance barriers among providers and patient. Even though cloud-based EMRs have received considerable attention since it would help achieve lower operational cost and better interoperability with other healthcare providers, the adoption of security-aware cloud systems has become an extremely important prerequisite for bringing interoperability and efficient management to the healthcare industry. Since a shared electronic health record (EHR) essentially represents a virtualized aggregation of distributed clinical records from multiple healthcare providers, sharing of such integrated EHRs may comply with various authorization policies from these data providers. In this work, we focus on the authorized and selective sharing of EHRs among several parties with different duties and objectives that satisfies access control and compliance issues in healthcare cloud computing environments. We present a secure medical data sharing framework to support selective sharing of composite EHRs aggregated from various healthcare providers and compliance of HIPAA regulations. Our approach also ensures that privacy concerns need to be accommodated for processing access requests to patients' healthcare information. To realize our proposed approach, we design and implement a cloud-based EHRs sharing system. In addition, we describe case studies and evaluation results to demonstrate the effectiveness and efficiency of our approach.
ContributorsWu, Ruoyu (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2012
151152-Thumbnail Image.png
Description
Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized in secure system development. Furthermore, specifying and managing access control

Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized in secure system development. Furthermore, specifying and managing access control policies are often error-prone due to the lack of effective analysis mechanisms and tools. In this dissertation, I present an Assurance Management Framework (AMF) that is designed to cope with various assurance management requirements from both access control system development and policy-based computing. On one hand, the AMF framework facilitates comprehensive analysis and thorough realization of formal access control models in secure system development. I demonstrate how this method can be applied to build role-based access control systems by adopting the NIST/ANSI RBAC standard as an underlying security model. On the other hand, the AMF framework ensures the correctness of access control policies in policy-based computing through automated reasoning techniques and anomaly management mechanisms. A systematic method is presented to formulate XACML in Answer Set Programming (ASP) that allows users to leverage off-the-shelf ASP solvers for a variety of analysis services. In addition, I introduce a novel anomaly management mechanism, along with a grid-based visualization approach, which enables systematic and effective detection and resolution of policy anomalies. I further evaluate the AMF framework through modeling and analyzing multiparty access control in Online Social Networks (OSNs). A MultiParty Access Control (MPAC) model is formulated to capture the essence of multiparty authorization requirements in OSNs. In particular, I show how AMF can be applied to OSNs for identifying and resolving privacy conflicts, and representing and reasoning about MPAC model and policy. To demonstrate the feasibility of the proposed methodology, a suite of proof-of-concept prototype systems is implemented as well.
ContributorsHu, Hongxin (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Dasgupta, Partha (Committee member) / Ye, Nong (Committee member) / Arizona State University (Publisher)
Created2012
151218-Thumbnail Image.png
Description
High-Resistivity Silicon (HRS) substrates are important for low-loss, high-performance microwave and millimeter wave devices in high-frequency telecommunication systems. The highest resistivity of up to ~10,000 ohm.cm is Float Zone (FZ) grown Si which is produced in small quantities and moderate wafer diameter. The more common Czochralski (CZ) Si can achieve

High-Resistivity Silicon (HRS) substrates are important for low-loss, high-performance microwave and millimeter wave devices in high-frequency telecommunication systems. The highest resistivity of up to ~10,000 ohm.cm is Float Zone (FZ) grown Si which is produced in small quantities and moderate wafer diameter. The more common Czochralski (CZ) Si can achieve resistivities of around 1000 ohm.cm, but the wafers contain oxygen that can lead to thermal donor formation with donor concentration significantly higher (~1015 cm-3) than the dopant concentration (~1012-1013 cm-3) of such high-resistivity Si leading to resistivity changes and possible type conversion of high-resistivity p-type silicon. In this research capacitance-voltage (C-V) characterization is employed to study the donor formation and type conversion of p-type High-resistivity Silicon-On-Insulator (HRSOI) wafers and the challenges involved in C-V characterization of HRSOI wafers using a Schottky contact are highlighted. The maximum capacitance of bulk or Silicon-On-Insulator (SOI) wafers is governed by the gate/contact area. During C-V characterization of high-resistivity SOI wafers with aluminum contacts directly on the Si film (Schottky contact); it was observed that the maximum capacitance is much higher than that due to the contact area, suggesting bias spreading due to the distributed transmission line of the film resistance and the buried oxide capacitance. In addition, an "S"-shape C-V plot was observed in the accumulation region. The effects of various factors, such as: frequency, contact and substrate sizes, gate oxide, SOI film thickness, film and substrate doping, carrier lifetime, contact work-function, temperature, light, annealing temperature and radiation on the C-V characteristics of HRSOI wafers are studied. HRSOI wafers have the best crosstalk prevention capability compared to other types of wafers, which plays a major role in system-on-chip configuration to prevent coupling between high frequency digital and sensitive analog circuits. Substrate crosstalk in HRSOI and various factors affecting the crosstalk, such as: substrate resistivity, separation between devices, buried oxide (BOX) thickness, radiation, temperature, annealing, light, and device types are discussed. Also various ways to minimize substrate crosstalk are studied and a new characterization method is proposed. Owing to their very low doping concentrations and the presence of oxygen in CZ wafers, HRS wafers pose a challenge in resistivity measurement using conventional techniques such as four-point probe and Hall measurement methods. In this research the challenges in accurate resistivity measurement using four-point probe, Hall method, and C-V profile are highlighted and a novel approach to extract resistivity of HRS wafers based on Impedance Spectroscopy measurements using polymer dielectrics such as Polystyrene and Poly Methyl Methacrylate (PMMA) is proposed.
ContributorsNayak, Pinakpani (Author) / Schroder, Dieter K. (Thesis advisor) / Vasileska, Dragica (Committee member) / Kozicki, Michael (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2012
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136523-Thumbnail Image.png
Description
Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of digital forensics. Teamwork in forensic analysis has been overlooked in systems even though forensics relies on collaboration. Forensic analysis lacks a system that is flexible and available on different electronic devices

Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of digital forensics. Teamwork in forensic analysis has been overlooked in systems even though forensics relies on collaboration. Forensic analysis lacks a system that is flexible and available on different electronic devices which are being used and incorporated into everyday life. For instance, cellphones or tablets that are easy to bring on-the-go to sites where the first steps of forensic analysis is done. Due to the present day conversion to online accessibility, most electronic devices connect to the internet. Squeegee is a proof of concept that forensic analysis can be done on the web. The forensic analysis expansion to the web opens many doors to collaboration and accessibility.
ContributorsJuntiff, Samantha Maria (Author) / Ahn, Gail-Joon (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
135758-Thumbnail Image.png
Description
Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species of insects, especially storage beetles, is a reliable indicator of possible contamination during storage and food processing. However, the current approach to identifying species is visual examination by human analysts; this method is rather subjective and time-consuming. Furthermore, confident identification requires extensive experience and training. To aid this inspection process, we have developed in collaboration with FDA analysts some image analysis-based machine intelligence to achieve species identification with up to 90% accuracy. The current project is a continuation of this development effort. Here we present an image analysis environment that allows practical deployment of the machine intelligence on computers with limited processing power and memory. Using this environment, users can prepare input sets by selecting images for analysis, and inspect these images through the integrated pan, zoom, and color analysis capabilities. After species analysis, the results panel allows the user to compare the analyzed images with referenced images of the proposed species. Further additions to this environment should include a log of previously analyzed images, and eventually extend to interaction with a central cloud repository of images through a web-based interface. Additional issues to address include standardization of image layout, extension of the feature-extraction algorithm, and utilizing image classification to build a central search engine for widespread usage.
ContributorsMartin, Daniel Luis (Author) / Ahn, Gail-Joon (Thesis director) / Doupé, Adam (Committee member) / Xu, Joshua (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137152-Thumbnail Image.png
Description
Radio Frequency Identification (RFID) technology allows objects to be identified electronically by way of a small electronic tag. RFID is quickly becoming quite popular, and there are many security hurdles for this technology to overcome. The iCLASS line of RFID, produced by HID Global, is one such technology that is

Radio Frequency Identification (RFID) technology allows objects to be identified electronically by way of a small electronic tag. RFID is quickly becoming quite popular, and there are many security hurdles for this technology to overcome. The iCLASS line of RFID, produced by HID Global, is one such technology that is widely used for secure access control and applications where a contactless authentication element is desirable. Unfortunately, iCLASS has been shown to have security issues. Nevertheless customers continue to use it because of the great cost that would be required to completely replace it. This Honors Thesis will address attacks against iCLASS and means for countering them that do not require such an overhaul.
ContributorsMellott, Matthew John (Author) / Ahn, Gail-Joon (Thesis director) / Thorstenson, Tina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05