Matching Items (248)
128004-Thumbnail Image.png
Description

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying network is key to understanding its collective dynamics. Based on compressive sensing, we develop an efficient approach to reconstructing complex

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying network is key to understanding its collective dynamics. Based on compressive sensing, we develop an efficient approach to reconstructing complex networks under game-based interactions from small amounts of data. The method is validated by using a variety of model networks and by conducting an actual experiment to reconstruct a social network. While most existing methods in this area assume oscillator networks that generate continuous-time data, our work successfully demonstrates that the extremely challenging problem of reverse engineering of complex networks can also be addressed even when the underlying dynamical processes are governed by realistic, evolutionary-game type of interactions in discrete time.

ContributorsWang, Wen-Xu (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ye, Jieping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-12-21
128602-Thumbnail Image.png
Description

At least since the late nineteenth century, researchers have sought an explanation for infantile amnesia (IA)—the lack of autobiographical memories dating from early childhood—and childhood amnesia (CA), faster forgetting of events up until the age of about seven. Evidence suggests that IA occurs across altricial species, and a number of

At least since the late nineteenth century, researchers have sought an explanation for infantile amnesia (IA)—the lack of autobiographical memories dating from early childhood—and childhood amnesia (CA), faster forgetting of events up until the age of about seven. Evidence suggests that IA occurs across altricial species, and a number of studies using animal models have converged on the hypothesis that maturation of the hippocampus is an important factor. But why does the hippocampus mature at one time and not another, and how does that maturation relate to memory? Our hypothesis is rooted in theories of embodied cognition, and it provides an explanation both for hippocampal development and the end of IA. Specifically, the onset of locomotion prompts the alignment of hippocampal place cells and grid cells to the environment, which in turn facilitates the ontogeny of long-term episodic memory and the end of IA. That is, because the animal can now reliably discriminate locations, location becomes a stable cue for memories. Furthermore, as the mode of human locomotion shifts from crawling to walking, there is an additional shift in the alignment of the hippocampus that marks the beginning of adult-like episodic memory and the end of CA. Finally, given a reduction in self-locomotion and exploration with aging, the hypothesis suggests a partial explanation for cognitive decline with aging.

ContributorsGlenberg, Arthur (Author) / Hayes, Justin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-25
128373-Thumbnail Image.png
Description

Despite wide applications of high-throughput biotechnologies in cancer research, many biomarkers discovered by exploring large-scale omics data do not provide satisfactory performance when used to predict cancer treatment outcomes. This problem is partly due to the overlooking of functional implications of molecular markers. Here, we present a novel computational method

Despite wide applications of high-throughput biotechnologies in cancer research, many biomarkers discovered by exploring large-scale omics data do not provide satisfactory performance when used to predict cancer treatment outcomes. This problem is partly due to the overlooking of functional implications of molecular markers. Here, we present a novel computational method that uses evolutionary conservation as prior knowledge to discover bona fide biomarkers. Evolutionary selection at the molecular level is nature's test on functional consequences of genetic elements. By prioritizing genes that show significant statistical association and high functional impact, our new method reduces the chances of including spurious markers in the predictive model. When applied to predicting therapeutic responses for patients with acute myeloid leukemia and to predicting metastasis for patients with prostate cancers, the new method gave rise to evolution-informed models that enjoyed low complexity and high accuracy. The identified genetic markers also have significant implications in tumor progression and embrace potential drug targets. Because evolutionary conservation can be estimated as a gene-specific, position-specific, or allele-specific parameter on the nucleotide level and on the protein level, this new method can be extended to apply to miscellaneous “omics” data to accelerate biomarker discoveries.

ContributorsLiu, Li (Author) / Chang, Yung (Author) / Yang, Tao (Author) / Noren, David P. (Author) / Long, Byron (Author) / Kornblau, Steven (Author) / Qutub, Amina (Author) / Ye, Jieping (Author) / College of Health Solutions (Contributor)
Created2016-10-21
128330-Thumbnail Image.png
Description

Modern software applications are commonly built by leveraging pre-fabricated modules, e.g. application programming interfaces (APIs), which are essential to implement the desired functionalities of software applications, helping reduce the overall development costs and time. When APIs deal with security-related functionality, it is critical to ensure they comply with their design

Modern software applications are commonly built by leveraging pre-fabricated modules, e.g. application programming interfaces (APIs), which are essential to implement the desired functionalities of software applications, helping reduce the overall development costs and time. When APIs deal with security-related functionality, it is critical to ensure they comply with their design requirements since otherwise unexpected flaws and vulnerabilities may consequently occur. Often, such APIs may lack sufficient specification details, or may implement a semantically-different version of a desired security model to enforce, thus possibly complicating the runtime enforcement of security properties and making it harder to minimize the existence of serious vulnerabilities. This paper proposes a novel approach to address such a critical challenge by leveraging the notion of software assertions. We focus on security requirements in role-based access control models and show how proper verification at the source-code level can be performed with our proposed approach as well as with automated state-of-the-art assertion-based techniques.

ContributorsRubio Medrano, Carlos (Author) / Ahn, Gail-Joon (Author) / Sohr, Karsten (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-21
155500-Thumbnail Image.png
Description
Reading comprehension is a critical aspect of life in America, but many English language learners struggle with this skill. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is a tablet-based interactive learning environment is designed to improve reading comprehension. During use of EMBRACE, all interactions with the system

Reading comprehension is a critical aspect of life in America, but many English language learners struggle with this skill. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is a tablet-based interactive learning environment is designed to improve reading comprehension. During use of EMBRACE, all interactions with the system are logged, including correct and incorrect behaviors and help requests. These interactions could potentially be used to predict the child’s reading comprehension, providing an online measure of understanding. In addition, time-related features have been used for predicting learning by educational data mining models in mathematics and science, and may be relevant in this context. This project investigated the predictive value of data mining models based on user actions for reading comprehension, with and without timing information. Contradictory results of the investigation were obtained. The KNN and SVM models indicated that elapsed time is an important feature, but the linear regression models indicated that elapsed time is not an important feature. Finally, a new statistical test was performed on the KNN algorithm which indicated that the feature selection process may have caused overfitting, where features were chosen due coincidental alignment with the participants’ performance. These results provide important insights which will aid in the development of a reading comprehension predictor that improves the EMBRACE system’s ability to better serve ELLs.
ContributorsDexheimer, Matthew Scott (Author) / Walker, Erin (Thesis advisor) / Glenberg, Arthur (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2017
153437-Thumbnail Image.png
Description
A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control

A converging operations approach using response time distribution modeling was adopted to better characterize the cognitive control dynamics underlying ongoing task cost and cue detection in event based prospective memory (PM). In Experiment 1, individual differences analyses revealed that working memory capacity uniquely predicted nonfocal cue detection, while proactive control and inhibition predicted variation in ongoing task cost of the ex-Gaussian parameter associated with continuous monitoring strategies (mu). In Experiments 2A and 2B, quasi-experimental techniques aimed at identifying the role of proactive control abilities in PM monitoring and cue detection suggested that low ability participants may have PM deficits during demanding tasks due to inefficient monitoring strategies, but that emphasizing importance of the intention can increase reliance on more efficacious monitoring strategies that boosts performance (Experiment 2A). Furthermore, high proactive control ability participants are able to efficiently regulate their monitoring strategies under scenarios that do not require costly monitoring for successful cue detection (Experiment 2B). In Experiments 3A and 3B, it was found that proactive control benefited cue detection in interference-rich environments, but the neural correlates of cue detection or intention execution did not differ when engaged in proactive versus reactive control. The results from the current set of studies highlight the importance of response time distribution modeling in understanding PM cost. Additionally, these results have important implications for extant theories of PM and have considerable applied ramifications concerning the cognitive control processes that should be targeted to improve PM abilities.
ContributorsBall, Brett Hunter (Author) / Brewer, Gene A. (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Amazeen, Eric (Committee member) / Arizona State University (Publisher)
Created2015
135808-Thumbnail Image.png
Description
The premise of the embodied cognition hypothesis is that cognitive processes require emotion, sensory, and motor systems in the brain, rather than using arbitrary symbols divorced from sensorimotor systems. The hypothesis explains many of the mechanisms of mental simulation or imagination and how they facilitate comprehension of concepts. Some forms

The premise of the embodied cognition hypothesis is that cognitive processes require emotion, sensory, and motor systems in the brain, rather than using arbitrary symbols divorced from sensorimotor systems. The hypothesis explains many of the mechanisms of mental simulation or imagination and how they facilitate comprehension of concepts. Some forms of embodied processing can be measured using electroencephalography (EEG), in a particular waveform known as the mu rhythm (8-13 Hz) in the sensorimotor cortex of the brain. Power in the mu band is suppressed (or de-synchronized) when an individual performs an action, as well as when the individual imagines performing the action, thus mu suppression measures embodied imagination. An important question however is whether the sensorimotor cortex involvement while reading, as measured by mu suppression, is part of the comprehension of what is read or if it is arises after comprehension has taken place. To answer this question, participants first took the Gates-MacGinitie reading comprehension test. Then, mu-suppression was measured while participants read experimental materials. The degree of mu-suppression while reading verbs correlated .45 with their score on the Gates-MacGinitie test. This correlation strongly suggests that the sensorimotor system involvement while reading action sentences is part of the comprehension process rather than being an aftereffect.
ContributorsMarino, Annette Webb (Author) / Glenberg, Arthur (Thesis director) / Presson, Clark (Committee member) / Blais, Chris (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
This study determines if principles of embodied cognition can be used to enhance the teaching of self-regulation skills in a sample of preschoolers. The current research replicates Conway and McKinney (2022). In the replication study, 15 participants were recruited at ASU’s Child Study Lab (CSL) for a total of 39

This study determines if principles of embodied cognition can be used to enhance the teaching of self-regulation skills in a sample of preschoolers. The current research replicates Conway and McKinney (2022). In the replication study, 15 participants were recruited at ASU’s Child Study Lab (CSL) for a total of 39 participants (when combined with Conway and McKinney) ages three to six, across the entire experiment. The combined results of both the original study and the replicated study are reported. The participants were matched on the Peabody Picture Vocabulary Test (PPVT) scores and one from each pair was randomly placed in the embodied group and the other was placed in the traditional group. The structure of the experiment had two phases, with four lesson plans each; the first focuses on sequential thought, and the second focuses on impulse control and how that could relate to emotions (i.e., self-regulation). Because the sequential thought pattern (First, Next, Last) resembles self-monitoring via impulse control (Stop and Think), we expected the sequential thought pattern to transfer across the phases. In Phase 1 of the experiment, the embodied group received four embodied lesson plans (i.e., with physical manipulable items) and the traditional group received four traditional, two-dimensional style lesson plans (i.e., flipbook with pictures). In Phase 2 of the experiment, each participant received four traditional-style impulse control lesson plans. The hypothesis for this study is that the embodied condition would see an increase in overall net scores in Phase 1 and 2 of the experiment compared to the traditional condition. The researchers conducted a two-way factorial ANOVA to analyze both group pre- and post-test scores. While there was no evidence that the effect of condition, either embodied or traditional, influenced pre- and post-test scores, there was evidence that the participants learned in the experiment. This experiment may need to be modified to have more lesson plans and be replicated with a larger sample size to determine any statistically significant effect.
ContributorsOskowis, Athena (Author) / Glenberg, Arthur (Thesis director) / Kupfer, Anne (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor)
Created2024-05