Matching Items (145)
129421-Thumbnail Image.png
Description

The tensile stress–strain response of a fiber reinforced concrete dominates the performance under many loading conditions and applications. To represent this property as an average equivalent response, a back-calculation process from flexural testing is employed. The procedure is performed by model fitting of the three-point and four-point bending load deflection

The tensile stress–strain response of a fiber reinforced concrete dominates the performance under many loading conditions and applications. To represent this property as an average equivalent response, a back-calculation process from flexural testing is employed. The procedure is performed by model fitting of the three-point and four-point bending load deflection data on two types of macro synthetic polymeric fibers, one type of steel fiber and one type of Alkali Resistant (AR) glass fiber. A strain softening tensile model is used to simulate the behavior of different FRC types and obtain the experimental flexural response. The stress–strain model for each age, fiber type and dosage rate is simulated by means of the inverse analysis procedure, using closed-form moment–curvature relationship and load–deflection response of the piecewise-linear material. The method of approach is further applied to one external data set for High Performance Fiber Reinforced Concrete (HPFRC) with two different types of steel fibers and validated by tensile test results reported. Results of back-calculation of stress–strain responses by tri-linear tensile model for all mixtures are compared and correlated with the corresponding standard method parameters used for post crack behavior characterization and a regression analysis for comparative evaluation of test data is presented.

ContributorsMobasher, Barzin (Author) / Bakhshi, Mehdi (Author) / Barsby, Christopher (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-11-15
128330-Thumbnail Image.png
Description

Modern software applications are commonly built by leveraging pre-fabricated modules, e.g. application programming interfaces (APIs), which are essential to implement the desired functionalities of software applications, helping reduce the overall development costs and time. When APIs deal with security-related functionality, it is critical to ensure they comply with their design

Modern software applications are commonly built by leveraging pre-fabricated modules, e.g. application programming interfaces (APIs), which are essential to implement the desired functionalities of software applications, helping reduce the overall development costs and time. When APIs deal with security-related functionality, it is critical to ensure they comply with their design requirements since otherwise unexpected flaws and vulnerabilities may consequently occur. Often, such APIs may lack sufficient specification details, or may implement a semantically-different version of a desired security model to enforce, thus possibly complicating the runtime enforcement of security properties and making it harder to minimize the existence of serious vulnerabilities. This paper proposes a novel approach to address such a critical challenge by leveraging the notion of software assertions. We focus on security requirements in role-based access control models and show how proper verification at the source-code level can be performed with our proposed approach as well as with automated state-of-the-art assertion-based techniques.

ContributorsRubio Medrano, Carlos (Author) / Ahn, Gail-Joon (Author) / Sohr, Karsten (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-21
153782-Thumbnail Image.png
Description
Composite materials are finally providing uses hitherto reserved for metals in structural systems applications – airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in

Composite materials are finally providing uses hitherto reserved for metals in structural systems applications – airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young’s Modulus and Poisson’s ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.
ContributorsHarrington, Joseph (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2015
153857-Thumbnail Image.png
Description
A simplified bilinear moment-curvature model are derived based on the moment-curvature response generated from a parameterized stress-strain response of strain softening and or strain-hardening material by Dr. Barzin Mobasher and Dr. Chote Soranakom. Closed form solutions are developed for deflection calculations of determinate beams subjected to usual loading patterns at

A simplified bilinear moment-curvature model are derived based on the moment-curvature response generated from a parameterized stress-strain response of strain softening and or strain-hardening material by Dr. Barzin Mobasher and Dr. Chote Soranakom. Closed form solutions are developed for deflection calculations of determinate beams subjected to usual loading patterns at any load stage. The solutions are based on a bilinear moment curvature response characterized by the flexural crack initiation and ultimate capacity based on a deflection hardening behavior. Closed form equations for deflection calculation are presented for simply supported beams under three point bending, four point bending, uniform load, concentrated moment at the middle, pure bending, and for cantilever beam under a point load at the end, a point load with an arbitrary distance from the fixed end, and uniform load. These expressions are derived for pre-cracked and post cracked regions. A parametric study is conducted to examine the effects of moment and curvature at the ultimate stage to moment and curvature at the first crack ratios on the deflection. The effectiveness of the simplified closed form solution is demonstrated by comparing the analytical load deflection response and the experimental results for three point and four point bending. The simplified bilinear moment-curvature model is modified by imposing the deflection softening behavior so that it can be widely implemented in the analysis of 2-D panels. The derivations of elastic solutions and yield line approach of 2-D panels are presented. Effectiveness of the proposed moment-curvature model with various types of panels is verified by comparing the simulated data with the experimental data of panel test.
ContributorsWang, Xinmeng (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015
128683-Thumbnail Image.png
Description

Unidirectional glass fiber reinforced polymer (GFRP) is tested at four initial strain rates (25, 50, 100 and 200 s-1) and six temperatures (−25, 0, 25, 50, 75 and 100 °C) on a servo-hydraulic high-rate testing system to investigate any possible effects on their mechanical properties and failure patterns. Meanwhile, for

Unidirectional glass fiber reinforced polymer (GFRP) is tested at four initial strain rates (25, 50, 100 and 200 s-1) and six temperatures (−25, 0, 25, 50, 75 and 100 °C) on a servo-hydraulic high-rate testing system to investigate any possible effects on their mechanical properties and failure patterns. Meanwhile, for the sake of illuminating strain rate and temperature effect mechanisms, glass yarn samples were complementally tested at four different strain rates (40, 80, 120 and 160 s-1) and varying temperatures (25, 50, 75 and 100 °C) utilizing an Instron drop-weight impact system. In addition, quasi-static properties of GFRP and glass yarn are supplemented as references. The stress–strain responses at varying strain rates and elevated temperatures are discussed. A Weibull statistics model is used to quantify the degree of variability in tensile strength and to obtain Weibull parameters for engineering applications.

ContributorsOu, Yunfu (Author) / Zhu, Deju (Author) / Zhang, Huaian (Author) / Huang, Liang (Author) / Yao, Yiming (Author) / Li, Gaosheng (Author) / Mobasher, Barzin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-19