Matching Items (39)
148450-Thumbnail Image.png
Description

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The purpose of this thesis is to draft a protocol to study adaptive therapy in a preclinical model of breast cancer on MCF7, estrogen receptor-positive, cells that have evolved resistance to fulvestrant and palbociclib (MCF7 R). In this study, we used two protocols: drug dose adjustment and intermittent therapy. The MCF7 R cell lines were injected into the mammary fat pads of 11-month-old NOD/SCID gamma (NSG) mice (18 mice) which were then treated with gemcitabine.<br/>The results of this experiment did not provide complete information because of the short-term treatments. In addition, we saw an increase in the tumor size of a few of the treated mice, which could be due to the metabolism of the drug at that age, or because of the difference in injection times. Therefore, these adaptive therapy protocols on hormone-refractory breast cancer cell lines will be repeated on young, 6-week old mice by injecting the cell lines at the same time for all mice, which helps the results to be more consistent and accurate.

ContributorsConti, Aviona (Author) / Maley, Carlo (Thesis director) / Blattman, Joseph (Committee member) / Seyedi, Sareh (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147917-Thumbnail Image.png
Description

Cancer is a disease acquired through mutations which leads to uncontrolled cell division and destruction of normal tissue within the body. Recent increases in available cross-species data of cancer in mammals, reptiles, birds, and other vertebrates has revealed that the prevalence of cancers varies widely across species. Life-history theory suggests

Cancer is a disease acquired through mutations which leads to uncontrolled cell division and destruction of normal tissue within the body. Recent increases in available cross-species data of cancer in mammals, reptiles, birds, and other vertebrates has revealed that the prevalence of cancers varies widely across species. Life-history theory suggests that there could be traits that potentially explain some of that variation. We are particularly interested in species that get very little cancer. How are they preventing cancer and can we learn from them how to prevent cancer in humans? Comparative oncology focuses on the analysis of cancer prevalence and traits in different non-human species and allows researchers to apply their findings to humans with the goal of improving and advancing cancer treatment. We incorporate the predictions that animals with larger bodies have evolved better cancer suppression mechanisms than animals with small bodies. Ruminants in the past were larger in size than modern day ruminants and they may have retained cancer defenses from their large ancestors. The strong cancer defenses and small body size combined may explain the low prevalence of cancer in Ruminants. This paper aims to evaluate the presence of benign and malignant neoplasia prevalence across multiple ruminant species following a time of dramatic decrease in body size across the clade. Our aim is to illuminate the potential impact that these shifts in body size had on their cancer prevalence as well as test the statistical power of other key life history variables to predict cancer prevalence.

ContributorsAustin, Shannon Ruth (Author) / Maley, Carlo (Thesis director) / Boddy, Amy (Committee member) / Compton, Zachary (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131298-Thumbnail Image.png
Description
Macrostomum lignano is characterized by its elevated regenerative ability conferred by its high percentage of stem cells (the highest recorded for any animal). M. lignano is already used as a model organism for addressing fundamental questions of stem cell biology, aging, regeneration, and reproduction, but not yet cancer.
M. lignano larvae

Macrostomum lignano is characterized by its elevated regenerative ability conferred by its high percentage of stem cells (the highest recorded for any animal). M. lignano is already used as a model organism for addressing fundamental questions of stem cell biology, aging, regeneration, and reproduction, but not yet cancer.
M. lignano larvae were isolated into separate wells of 24-well plates. After reaching maturity (30 days), the experimental plates were exposed to 5 Gys of X-rays every 4 days for a total of a 25 Gy exposure. We observed phenotypes that may be attributed to the acute effect of irradiation (e.g. blisters) but we recorded two types of phenotypes that may be a result of long-term effects of exposure to radiation. We observed enlarged testis and dark regions/masses that appeared statistically significantly more frequently in the treated animals (Fisher exact test, p=0.0026). Preliminary histological analyses of the enlarged testis suggest a benign testis enlargement due to an aberrant growth of the testes and an accumulation of aberrant spermatozoa. Importantly, we found that, similar to cancer, the dark masses can grow in size over time and the histological analysis confirms that the observed masses are composed of cells completely different from surrounding normal cells. Notably, we observed that those masses can develop and then completely disappear through an observed method of ejection. M. lignano offer the unique possibility to study in vivo cancer development in a simple organism that can easily be cultured in the lab in large numbers.
ContributorsGerman, Adriana (Author) / Fortunato, Angelo (Thesis director) / Maley, Carlo (Committee member) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131342-Thumbnail Image.png
Description
Cancer rates vary significantly across tissue type and location in humans, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. A comparison of cancer prevalence across

Cancer rates vary significantly across tissue type and location in humans, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. A comparison of cancer prevalence across the tree of life can give insight into how evolutionary history has shaped various mechanisms of cancer suppression. Here, we explore whether species-level life history strategies are associated with differences in mammary neoplasia rates across mammals. We propose that the same patterns of cancer prevalence that have been reported across species will be maintained at the tissue-specific level. We used a phylogenetic regression on 15 life history traits across 112 mammalian species to determine the correlation between a life history trait and how it relates to mammary neoplasia prevalence. A greater risk of mammary neoplasia was found in the characteristics associated with fast life history organisms and a lower risk of mammary neoplasia was found in the characteristics associated with slow life history organisms. With this analysis, a framework is provided for how different life history modalities can influence cancer vulnerability.
ContributorsMajhail, Komal Kaur (Co-author) / Majhail, Komal (Co-author) / Maley, Carlo (Thesis director) / Boddy, Amy (Committee member) / Compton, Zachary (Committee member) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132454-Thumbnail Image.png
Description
Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life history of a species should also determine its cancer susceptibility. By looking at varying life histories, potential evolutionary trends could be used to explain differing cancer rates. Life history theory could be an important framework for understanding cancer vulnerabilities with different trade-offs between life history traits and cancer defenses. Birds have diverse life history strategies that could explain differences in cancer suppression. Peto's paradox is the observation that cancer rates do not typically increase with body size and longevity despite an increased number of cell divisions over the animal's lifetime that ought to be carcinogenic. Here we show how Peto’s paradox is negatively correlated for cancer within the clade, Aves. That is, larger, long-lived birds get more cancer than smaller, short-lived birds (p=0.0001; r2= 0.024). Sexual dimorphism in both plumage color and size differ among Aves species. We hypothesized that this could lead to a difference in cancer rates due to the amount of time and energy sexual dimorphism takes away from somatic maintenance. We tested for an association between a variety of life history traits and cancer, including reproductive potential, growth rate, incubation, mating systems, and sexual dimorphism in both color and size. We found male birds get less cancer than female birds (9.8% vs. 11.1%, p=0.0058).
ContributorsDolan, Jordyn Nicole (Author) / Maley, Carlo (Thesis director) / Harris, Valerie (Committee member) / Boddy, Amy (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132197-Thumbnail Image.png
Description
All multicellular organisms are susceptible to developing cancer, but some organisms have varying sensitivities to the disease. One such organism is the Trichoplax adhaerens which has no documented case of cancer development. T. adhaerens cancer resistance was studied by observing physiological and morphological changes of the organism after radiation treatment.

All multicellular organisms are susceptible to developing cancer, but some organisms have varying sensitivities to the disease. One such organism is the Trichoplax adhaerens which has no documented case of cancer development. T. adhaerens cancer resistance was studied by observing physiological and morphological changes of the organism after radiation treatment. Preliminary experiments suggested that this organism is able to survive exposure to 160 gray radiation treatment almost as well as untreated organisms. The T. adhaerens have two genes, TriadG6402 and TriadG5479, similar to the human genes TP53 and MDM2 respectively. TP53 and MDM2 are the two main genes associated with apoptosis in humans: an important cell regulatory checkpoint involved in cancer prevention. PCR analysis, done after radiation treatment, showed an overexpression of the ortholog gene MDM2 in the T. adhaerens. This may suggest that T. adhaerens block apoptosis from occurring and that their ortholog gene is involved in DNA repair. It is significant to study the gene expression of TriadG6402 and TriadG54791 in T. adhaerens because these genes are well conserved in humans. Future studies of these genes in the T. adhaerens can be used to understand the evolution of the function of these genes in more complex organisms and be used for human cancer prevention.
ContributorsKulkarni, Arathi (Author) / Fortunato, Angelo (Thesis director) / Maley, Carlo (Committee member) / Department of Economics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131993-Thumbnail Image.png
Description
Trichoplax adhaerens (Placozoa) is the simplest multicellular animal to be described. This organism lacks nervous tissue, muscle tissue and organs, and is composed of only five cell types organized into three layers. Placozoa are gaining popularity as a model organism due to their simple make-up and completely sequenced genome. The

Trichoplax adhaerens (Placozoa) is the simplest multicellular animal to be described. This organism lacks nervous tissue, muscle tissue and organs, and is composed of only five cell types organized into three layers. Placozoa are gaining popularity as a model organism due to their simple make-up and completely sequenced genome. The complete sequencing of this organism’s genome has revealed the presence of important genes in cancer such as TP53 and MDM2 genes. Along with the presence of these genes, there are also additional pathways commonly deregulated in cancer that are well conserved in this organism. T. adhaerens are able to survive exposure to 160Gy and even 240Gy of X-ray radiation. Though small dark bodies form within the main body, they tend to extrude those masses, and continue to reproduce afterwards. After exposure to both grades of radiation, there was a greater increase in the apparent population size of the treated population than the control population. There was also a greater decrease in surface area of the organisms exposed to 160Gy than the control organisms. This increase in population and decrease in surface area of the treated organisms could be due to the extruded bodies. We hypothesize that the observed extrusion is a novel cancer defense mechanism for ridding the animal of damaged or mutated cells. This hypothesis should be tested through longitudinal observation and genetic analysis of the extruded bodies.
ContributorsYi, Avalon (Author) / Fortunato, Angelo (Thesis director) / Maley, Carlo (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
133149-Thumbnail Image.png
Description
Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to

Bats (order Chiroptera) are the longest lived mammals for their size, with particularly extreme longevity evolving in the family Vespertilionidae, or vesper bats. Because of this, researchers have proposed using bats to study ageing and cancer suppression. Here, we study gene duplications across mammalian genomes and show that, similar to previous findings in elephants, bats have experienced duplications of the tumor suppressor gene TP53, including five genomic copies in the genome of the little brown bat (Myotis lucifugus) and two copies in Brandt's bat (Myotis brandtii). These species can live 37 and 41 years, respectively, despite having an adult body mass of only ~7 grams. We use evolutionary genetics and next generation sequencing approaches to show that positive selection has acted on the TP53 locus across bats, and two recently duplicated TP53 gene copies in the little brown bat are both highly conserved and expressed, suggesting they are functional. We also report an extraordinary genomic copy number expansion of the tumor suppressor gene FBXO31 in the common ancestor of vesper bats which accelerated in the Myotis lineage, leading to 34\u201457 copies and the expression of 20 functional FBXO31 homologs in Brandt's bat. As FBXO31 directs the degradation of MDM2, which is a negative regulator of TP53, we suggest that increased expression of both FBXO31 and TP53 may be related to an enhanced DNA-damage response to genotoxic stress brought on by long lifespans and rapid metabolic rates in bats.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo (Thesis director) / Wilson Sayres, Melissa (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134152-Thumbnail Image.png
Description
Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of

Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of linkage disequilibrium and the persistence of deleterious mutations. This has led to an increased susceptibility to a multitude of diseases, including cancer. To study the effects of artificial selection and life history characteristics on the risk of cancer mortality, we collected cancer mortality data from four studies as well as the percent of heterozygosity, body size, lifespan and breed group for 201 dog breeds. We also collected specific types of cancer breeds were susceptible to and compared the dog cancer mortality patterns to the patterns observed in other mammals. We found a relationship between cancer mortality rate and heterozygosity, body size, lifespan as well as breed group. Higher levels of heterozygosity were also associated with longer lifespan. These results indicate larger breeds, such as Irish Water Spaniels, Flat-coated Retrievers and Bernese Mountain Dogs, are more susceptible to cancer, with lower heterozygosity and lifespan. These breeds are also more susceptible to sarcomas, as opposed to carcinomas in smaller breeds, such as Miniature Pinschers, Chihuahuas, and Pekingese. Other mammals show that larger and long-lived animals have decreased cancer mortality, however, within dog breeds, the opposite relationship is observed. These relationships could be due to the trade-off between cellular maintenance and growing fast and large, with higher expression of growth factors, such as IGF-1. This study further demonstrates the relationships between cancer mortality, heterozygosity, and life history traits and exhibits dogs as an important model organism for understanding the relationship between genetics and health.
ContributorsBalsley, Cassandra Sierra (Author) / Maley, Carlo (Thesis director) / Wynne, Clive (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135135-Thumbnail Image.png
Description
Nucleic acid polymers have numerous applications in both therapeutics and research to control gene expression and bind biologically relevant targets. However, due to poor biological stability their clinical applications are limited. Chemical modifications can improve both intracellular and extracellular stability and enhance resistance to nuclease degradation. To identify a potential

Nucleic acid polymers have numerous applications in both therapeutics and research to control gene expression and bind biologically relevant targets. However, due to poor biological stability their clinical applications are limited. Chemical modifications can improve both intracellular and extracellular stability and enhance resistance to nuclease degradation. To identify a potential candidate for a highly stable synthetic nucleic acid, the biostability of α-L-threofuranosyl nucleic acid (TNA) was evaluated under simulated biological conditions. TNA contains a four-carbon sugar and is linked by 2’, 3’ phosphodiester bonds. We hypothesized that this distinct chemical structure would yield greater nuclease resistance in human serum and human liver microsomes, which were selected as biologically relevant nuclease conditions. We found that TNA oligonucleotides remained undigested for 7 days in these conditions. In addition, TNA/DNA heteropolymers and TNA/RNA oligonucleotide duplexes displayed nuclease resistance, suggesting that TNA has a protective effect over DNA and RNA. In conclusion TNA demonstrates potential as a viable synthetic nucleic acid for use in numerous clinical and therapeutic applications.
ContributorsCulbertson, Michelle Catherine (Author) / Maley, Carlo (Thesis director) / Mangone, Marco (Committee member) / Larsen, Andrew (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12