Matching Items (169)
149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
149757-Thumbnail Image.png
Description
ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water

ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water supplies to other parts of the ecosystem. An additional factor is the quality of water management. The United States-Mexican border provides an example of poor water management combined with increasing demand for water resources that are both scarce and uncertain. This dissertation focuses on the problem of water management in the border city of Ciudad Juarez, Chihuahua. The city has attracted foreign investment during the last few decades, largely due to relatively low environmental and labor costs, and to a range of tax incentives and concessions. This has led to economic and population growth, but also to higher demand for public services such as water which leads to congestion and scarcity. In particular, as water resources have become scarce, the cost of water supply has increased. The dissertation analyzes the conditions that allow for the efficient use of water resources at sustainable levels of economic activity--i.e., employment and investment. In particular, it analyzes the water management strategies that lead to an efficient and sustainable use of water when the source of water is either an aquifer, or there is conjunctive use of ground and imported water. The first part of the dissertation constructs a model of the interactive effects of water supply, wage rates, inward migration of labor and inward investment of capital. It shows how growing water scarcity affects population growth through the impact it has on real wage rates, and how this erodes the comparative advantage of Ciudad Juarez--low wages--to the point where foreign investment stops. This reveals the very close connection between water management and the level of economic activity in Ciudad Juarez. The second part of the dissertation examines the effect of sustainable and efficient water management strategies on population and economic activity levels under two different settings. In the first Ciudad Juarez relies exclusively on ground water to meet demand--this reflects the current situation of Ciudad Juarez. In the second Ciudad Juarez is able both to import water and to draw on aquifers to meet demand. This situation is motivated by the fact that Ciudad Juarez is considering importing water from elsewhere to maintain its economic growth and mitigate the overdraft of the Bolson del Hueco aquifer. Both models were calibrated on data for Ciudad Juarez, and then used to run experiments with respect to different environmental and economic conditions, and different water management options. It is shown that for a given set of technological, institutional and environmental conditions, the way water is managed in a desert environment determines the long run equilibrium levels of employment, investment and output. It is also shown that the efficiency of water management is consistent with the sustainability of water use and economic activity. Importing water could allow the economy to operate at higher levels of activity than where it relies solely on local aquifers. However, at some scale, water availability will limit the level of economic activity, and the disposable income of the residents of Ciudad Juarez.
ContributorsGarduno Angeles, Gustavo Leopoldo (Author) / Perrings, Charles (Thesis advisor) / Holway, Jim (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2011
149747-Thumbnail Image.png
Description
Since the Convention on Biological Diversity was established in 1992, more importance has been given to the conservation of genetic resources in the international community. In 2001, the International Treaty on Plant Genetic Resources for Food and Agriculture (PGRFA) focused on conserving plant genetic resources, including crop wild relatives (CWR).

Since the Convention on Biological Diversity was established in 1992, more importance has been given to the conservation of genetic resources in the international community. In 2001, the International Treaty on Plant Genetic Resources for Food and Agriculture (PGRFA) focused on conserving plant genetic resources, including crop wild relatives (CWR). Some of these genetic resources hold desirable traits--such as transfer of plant disease resistance, improvement of nutritional content, or increased resistance to climate change--that can improve commercial crops. For many years, ex situex situ conservation was the prevalent form of protecting plant genetic resources. However, after PGRFA was published in 1998, in situ techniques have increasingly been applied to conserve wild relatives and enhance domesticated crops.In situ techniques are preferred when possible, since they allow for continued evolution of traits through natural selection, and viability of seed stock through continuous germination and regeneration. In my research, I identified regions in Bolivia and rated them according to their potential for successful programs of iin situ conservation of wild crop relatives. In particular, I analyzed areas according to the following criteria: a) The prevalence of CWRs. b) The impacts of climate change, land use change, population growth, and economic development on the continued viability of CWRs in an area. c) The socio-political and economic conditions that might impede or facilitate successful conservation programs and outcomes. This work focuses on three genera of particular importance in Bolivia: Peanut (Arachis spp.), Potato (Solanum spp.) and Quinoa (Chenopodium spp.). I analyzed the above factors for each municipality in Bolivia (the smallest scale for which appropriate data were available). The results indicate which municipalities are most likely to successfully engage in CWR conservation projects. Finally, I present guidelines for the creation of conservation projects that pinpoint some of the potential risks and difficulties with in situ conservation programs in Bolivia and more generally.
ContributorsGonzalez-Paredes, Cecilia (Author) / Kinzig, Ann (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Chhetri, Netra (Committee member) / Arizona State University (Publisher)
Created2011
149815-Thumbnail Image.png
Description
Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been done in studying their spatial growth patterns over time. This

Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been done in studying their spatial growth patterns over time. This study attempts to study a sample of 30 informal settlements that exist in the National Capital Territory of India over a period of 40 years and identify relationships between the spatial growth rates and relevant factors identified in previous socio-economic studies of slums using advanced statistical methods. One of the key contributions of this paper is indicating the usefulness of satellite imagery or remote sensing data in spatial-longitudinal studies. This research utilizes readily available LANDSAT images to recognize the decadal spatial growth from 1970 to 2000, and also in extension, calculate the BI (transformed NDVI) as a proxy for the intensity of development for the settlements. A series of regression models were run after processing the data, and the levels of significance were then studied and compared to see which relationships indicated the highest levels of significance. It was observed that the change in BI had a higher strength of relationships with the change in independent variables than the settlement area growth. Also, logarithmic and cubic models showed the highest R-Square values than any other tested models.
ContributorsPrakash, Mihir (Author) / Guhathakurta, Subhrajit (Thesis advisor) / Myint, Soe W. (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2011
150171-Thumbnail Image.png
Description
Haiti has witnessed high deforestation rates in recent decades, caused largely by the fuel needs of a growing population. The resulting soil loss is estimated to have contributed towards a decline in agricultural productivity of 0.5% -1.2% per year since 1997. Recent studies show the potential of biochar use through

Haiti has witnessed high deforestation rates in recent decades, caused largely by the fuel needs of a growing population. The resulting soil loss is estimated to have contributed towards a decline in agricultural productivity of 0.5% -1.2% per year since 1997. Recent studies show the potential of biochar use through pyrolysis technology to increase crop yields and improve soil health. However, the appropriateness of this technology in the context of Haiti remains unexplored. The three objectives of this research were to identify agricultural- and fuel-use-related needs and gaps in rural Haitian communities; determine the appropriateness of biochar pyrolyzer technology, used to convert agricultural biomass into a carbon-rich charcoal; and develop an action-oriented plan for use by development organizations, communities, and governmental institutions to increase the likelihood of adoption. Data were collected using participatory rural appraisal techniques involving 30 individual interviews and three focus-group discussions in the villages of Cinquantin and La Boule in the La Coupe region of central Haiti. Topics discussed include agricultural practices and assets, fuel use and needs, technology use and adoption, and social management practices. The Sustainable Livelihoods framework was used to examine the assets of households and the livelihood strategies being employed. Individual and focus group interviews were analyzed to identify specific needs and gaps. E.M. Rogers' Diffusion of Innovations theory was used to develop potential strategies for the introduction of pyrolysis technology. Preliminary results indicate biochar pyrolysis has potential to address agricultural and fuel needs in rural Haiti. Probable early adopters of biochar technology include households that have adopted new agricultural techniques in the past, and those with livestock. Education about biochar, and a variety of pyrolysis technology options from which villagers may select, are important factors in successful adoption of biochar use. A grain mill as an example in one of the study villages provides a model of ownership and use of pyrolysis technology that may increase its likelihood of successful adoption. Additionally, women represent a group that may be well suited to control a new local biochar enterprise, potentially benefiting the community.
ContributorsDelaney, Michael Ryan (Author) / Aggarwal, Rimjhim (Thesis advisor) / Chhetri, Nalini (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
150180-Thumbnail Image.png
Description
The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for

The oceans play an essential role in global biogeochemical cycles and in regulating climate. The biological carbon pump, the photosynthetic fixation of carbon dioxide by phytoplankton and subsequent sequestration of organic carbon into deep water, combined with the physical carbon pump, make the oceans the only long-term net sink for anthropogenic carbon dioxide. A full understanding of the workings of the biological carbon pump requires a knowledge of the role of different taxonomic groups of phytoplankton (protists and cyanobacteria) to organic carbon export. However, this has been difficult due to the degraded nature of particles sinking into particle traps, the main tools employed by oceanographers to collect sinking particulate matter in the ocean. In this study DNA-based molecular methods, including denaturing gradient gel electrophoresis, cloning and sequencing, and taxon-specific quantitative PCR, allowed for the first time for the identification of which protists and cyanobacteria contributed to the material collected by the traps in relation to their presence in the euphotic zone. I conducted this study at two time-series stations in the subtropical North Atlantic Ocean, one north of the Canary Islands, and one located south of Bermuda. The Bermuda study allowed me to investigate seasonal and interannual changes in the contribution of the plankton community to particle flux. I could also show that small unarmored taxa, including representatives of prasinophytes and cyanobacteria, constituted a significant fraction of sequences recovered from sediment trap material. Prasinophyte sequences alone could account for up to 13% of the clone library sequences of trap material during bloom periods. These observations contradict a long-standing paradigm in biological oceanography that only large taxa with mineral shells are capable of sinking while smaller, unarmored cells are recycled in the euphotic zone through the microbial loop. Climate change and a subsequent warming of the surface ocean may lead to a shift in the protist community toward smaller cell size in the future, but in light of these findings these changes may not necessarily lead to a reduction in the strength of the biological carbon pump.
ContributorsAmacher, Jessica (Author) / Neuer, Susanne (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Lomas, Michael (Committee member) / Wojciechowski, Martin (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2011
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
ContributorsWegner, Scott Andrew (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Sanabria, Federico (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2013-05
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
152325-Thumbnail Image.png
Description
The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. For instance, chronic stress produces dendritic retraction in the hippocampus and mPFC, but dendritic hypertrophy in the amygdala, consistent with functional imaging in patients with PTSD. Some have hypothesized that these limbic region's modifications contribute to one's susceptibility to develop PTSD following a traumatic event. Consequently, we used a familiar chronic stress procedure in a rat model to create a vulnerable brain that might develop traits consistent with PTSD when presented with a challenge. In adult male rats, chronic stress by wire mesh restraint (6h/d/21d) was followed by a variety of behavioral tasks including radial arm water maze (RAWM), fear conditioning and extinction, and fear memory reconsolidation to determine chronic stress effects on behaviors mediated by these limbic structures. In chapter 2, we corroborated past findings that chronic stress caused hippocampal CA3 dendritic retraction. Importantly, we present new findings that CA3 dendritic retraction corresponded with poor spatial memory in the RAWM and that these outcomes reversed after a recovery period. In chapter 3, we also showed that chronic stress impaired mPFC-mediated extinction memory, findings that others have reported. Using carefully assessed behavior, we present new findings that chronic stress impacted nonassociative fear by enhancing contextual fear during extinction that generalized to a new context. Moreover, the generalization behavior corresponded with enhanced functional activation in the hippocampus and amygdala during fear extinction memory retrieval. In chapter 5, we showed for the first time that chronic stress enhanced amygdala functional activation during fear memory retrieval, i.e., reactivation. Moreover, these enhanced fear memories were resistant to protein synthesis interference to disrupt a previously formed memory, called reconsolidation in a novel attempt to weaken chronic stress enhanced traumatic memory. Collectively, these studies demonstrated the plastic and dynamic effects of chronic stress on limbic neurocircuitry implicated in PTSD. We showed that chronic stress created a structural and functional imbalance across the hippocampus, mPFC, and amygdala, which lead to a PTSD-like phenotype with persistent and exaggerated fear following fear conditioning. These behavioral disruptions in conjunction with morphological and functional imaging data reflect a chronic stress-induced imbalance between hippocampal and mPFC regulation in favor of amygdala function overdrive, and supports a novel approach for traumatic memory processing in PTSD.
ContributorsHoffman, Ann (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Hammer, Jr., Ronald P. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013