Matching Items (777)
Filtering by

Clear all filters

133731-Thumbnail Image.png
Description
This thesis explores the framing of gender equity within International Development organizations and the design of projects to promote it. Using case studies of projects financed by United States Agency for International Development (a major donor agency), and Inter Pares (a Canadian NGO) as evidence, the thesis identifies what works

This thesis explores the framing of gender equity within International Development organizations and the design of projects to promote it. Using case studies of projects financed by United States Agency for International Development (a major donor agency), and Inter Pares (a Canadian NGO) as evidence, the thesis identifies what works and what does not work in different contexts within these projects.
ContributorsPetersen, Melia Bea (Author) / Aggarwal, Rimjhim (Thesis director) / Manuel-Navarette, David (Committee member) / School of Politics and Global Studies (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134136-Thumbnail Image.png
Description
Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes.

Biomarkers are the cornerstone of modern-day medicine. They are defined as any biological substance in or outside the body that gives insight to the body's condition. Doctors and researchers can measure specific biomarkers to diagnose and treat patients, such as the concentration of hemoglobin Alc and its connection to diabetes. There are a variety of methods, or assays, to detect biomarkers, but the most common assay is enzyme-linked immunosorbent assay (ELISA). A new-generation assay termed mass spectrometric immunoassay (MSIA) can measure proteoforms, the different chemical variations of proteins, and their relative abundance. ELISA on the other hand measures the overall concentration of protein in the sample. Measuring each of the proteoforms of a protein is important because only one or two variations could be biologically significant and/or cause diseases. However, running MSIA is expensive. For this reason, an alternative plate-based MSIA technique was tested for its ability to detect the proteoforms of a protein called apolipoprotein C-III (ApoC-III). This technique combines the protein capturing procedure of ELISA to isolate the protein with detection in a mass spectrometer. A larger amount of ApoC-III present in the body indicates a considerable risk for coronary heart disease. The precision of the assay is determined on the coefficient of variation (CV). A CV value is the ratio of standard deviation in relation to the mean, represented as a percentage. The smaller the percentage, the less variation the assay has, and therefore the more ability it has to detect subtle changes in the biomarker. An accepted CV would be less than 10% for single-day tests (intra-day) and less than 15% for multi-day tests (inter-day). The plate-based MSIA was started by first coating a 96-well round bottom plate with 2.5 micrograms of ApoC-III antibody. Next, a series of steps were conducted: a buffer wash, then the sample incubation, followed by another buffer wash and two consecutive water washes. After the final wash, the wells were filled with a MALDI matrix, then spotted onto a gold plate to dry. The dry gold target was then placed into a MALDI-TOF mass spectrometer to produce mass spectra for each spot. The mass spectra were calibrated and the area underneath each of the four peaks representing the ApoC-III proteoforms was exported as an Excel file. The intra-day CV values were found by dividing the standard deviation by the average relative abundance of each peak. After repeating the same procedure for three more days, the inter-day CVs were found using the same method. After completing the experiment, the CV values were all within the acceptable guidelines. Therefore, the plate-based MSIA is a viable alternative for finding proteoforms than the more expensive MSIA tips. To further validate this, additional tests will need to be conducted with different proteins and number of samples to determine assay flexibility.
ContributorsTieu, Luc (Author) / Borges, Chad (Thesis director) / Nedelkov, Dobrin (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134295-Thumbnail Image.png
Description
Brown adipose tissue (BAT) is thought to be important in combating obesity as it can expend energy in the form of heat, e.g. thermogenesis. The goal of this study was to study the effect of injected norepinephrine (NE) on the activation of BAT in rats that were fed a high

Brown adipose tissue (BAT) is thought to be important in combating obesity as it can expend energy in the form of heat, e.g. thermogenesis. The goal of this study was to study the effect of injected norepinephrine (NE) on the activation of BAT in rats that were fed a high fat diet (HFD). A dose of 0.25 mg/kg NE was used to elicit a temperature response that was measured using transponders inserted subcutaneously over the BAT and lower back and intraperitoneally to measure the core temperature. The results found that the thermic effect of the BAT increased after the transition from low fat diet to a high fat diet (LFD) yet, after prolonged exposure to the HFD, the effects resembled levels found with the LFD. This suggests that while a HFD may stimulate the effect of BAT, long term exposure may have adverse effects on BAT activity. This may be due to internal factors that will need to be examined further.
ContributorsSion, Paul William (Author) / Herman, Richard (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135371-Thumbnail Image.png
Description
Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not

Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not template-driven, GT deregulation yields heterogeneous arrays of aberrant intact glycan products, some in undetectable quantities in clinical bio-fluids (e.g., blood plasma). Numerous glycan features (e.g., 6 sialylation, β-1,6-branching, and core fucosylation) stem from approximately 25 glycan “nodes:” unique linkage specific monosaccharides at particular glycan branch points that collectively confer distinguishing features upon glycan products. For each node, changes in normalized abundance (Figure 1) may serve as nearly 1:1 surrogate measure of activity for culpable GTs and may correlate with particular stages of carcinogenesis. Complementary to traditional top down glycomics, the novel bottom-up technique applied herein condenses each glycan node and feature into a single analytical signal, quantified by two GC-MS instruments: GCT (time-of-flight analyzer) and GCMSD (transmission quadrupole analyzers). Bottom-up analysis of stage 3 and 4 breast cancer cases revealed better overall precision for GCMSD yet comparable clinical performance of both GC MS instruments and identified two downregulated glycan nodes as excellent breast cancer biomarker candidates: t-Gal and 4,6-GlcNAc (ROC AUC ≈ 0.80, p < 0.05). Resulting from the activity of multiple GTs, t-Gal had the highest ROC AUC (0.88) and lowest ROC p‑value (0.001) among all analyzed nodes. Representing core-fucosylation, glycan node 4,6-GlcNAc is a nearly 1:1 molecular surrogate for the activity of α-(1,6)-fucosyltransferase—a potential target for cancer therapy. To validate these results, future projects can analyze larger sample sets, find correlations between breast cancer stage and changes in t-Gal and 4,6-GlcNAc levels, gauge the specificity of these nodes for breast cancer and their potential role in other cancer types, and develop clinical tests for reliable breast cancer diagnosis and treatment monitoring based on t-Gal and 4,6-GlcNAc.
ContributorsZaare, Sahba (Author) / Borges, Chad (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135360-Thumbnail Image.png
Description
Aberrant glycosylation has been shown to be linked to specific cancers, and using this idea, it was proposed that the levels of glycans in the blood could predict stage I adenocarcinoma. To track this glycosylation, glycan were broken down into glycan nodes via methylation analysis. This analysis utilized information from

Aberrant glycosylation has been shown to be linked to specific cancers, and using this idea, it was proposed that the levels of glycans in the blood could predict stage I adenocarcinoma. To track this glycosylation, glycan were broken down into glycan nodes via methylation analysis. This analysis utilized information from N-, O-, and lipid linked glycans detected from gas chromatography-mass spectrometry. The resulting glycan node-ratios represent the initial quantitative data that were used in this experiment.
For this experiment, two Sets of 50 µl blood plasma samples were provided by NYU Medical School. These samples were then analyzed by Dr. Borges’s lab so that they contained normalized biomarker levels from patients with stage 1 adenocarcinoma and control patients with matched age, smoking status, and gender were examined. An ROC curve was constructed under individual and paired conditions and AUC calculated in Wolfram Mathematica 10.2. Methods such as increasing size of training set, using hard vs. soft margins, and processing biomarkers together and individually were used in order to increase the AUC. Using a soft margin for this particular data set was proved to be most useful compared to the initial set hard margin, raising the AUC from 0.6013 to 0.6585. In regards to which biomarkers yielded the better value, 6-Glc/6-Man and 3,6-Gal glycan node ratios had the best with 0.7687 AUC and a sensitivity of .7684 and specificity of .6051. While this is not enough accuracy to become a primary diagnostic tool for diagnosing stage I adenocarcinoma, the methods examined in the paper should be evaluated further. . By comparison, the current clinical standard blood test for prostate cancer that has an AUC of only 0.67.
ContributorsDe Jesus, Celine Spicer (Author) / Taylor, Thomas (Thesis director) / Borges, Chad (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135221-Thumbnail Image.png
Description
The objective of this study was to better understand promising pathways to realizing human rights norms in the context of rapidly developing cities, and the role that the courts play in this process. Scholars have already started to ask these larger questions of social transformation; however, there continues to be

The objective of this study was to better understand promising pathways to realizing human rights norms in the context of rapidly developing cities, and the role that the courts play in this process. Scholars have already started to ask these larger questions of social transformation; however, there continues to be a need for further research since the answers are vast and context-dependent. In order to contribute to these larger conversations, this project examined a key social right in Delhi \u2014 the right to housing. This study relied on interviews with key actors in Delhi's housing sector as well as a review of housing rights cases in the Delhi High Court in order to understand what mechanisms various actors utilize in the context of Delhi to realize the human right to housing on the ground. These two types of data were compared and contrasted to past research on human rights scholarship, law and social literature, and studies on urbanization. Two frameworks from these bodies of knowledge, the MAPs framework developed by Haglund and Aggarwal (2011) and the triangular framework created by Gauri and Brinks (2008), were utilized in particular to analyze interview and court data. Overall, this study found that the courts in India are advocates for housing rights, but that their advocacy is often limited, cautious, and influenced by a pattern of bias against populations without legal title to land. This study also found that communities and their allies are often more successful in realizing the right to housing when they combine litigation with other non-legal social change mechanisms. Consequently, it appears that the role of the courts in realizing ESR in Delhi is both complicated and limited, which means that pathways toward ESR realization are more promising when they incorporate non-legal mechanisms alongside court action.
ContributorsHale, Nicole (Author) / Haglund, LaDawn (Thesis director) / Aggarwal, Rimjhim (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
134770-Thumbnail Image.png
Description
Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including

Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including high false positive rates, low throughput, and lack of quantification. Moreover, most methods are not compatible for use in a clinical setting. To address these limitations, we have developed a multiplexed, in-solution protein microarray (MISPA) platform with broad applications in proteomics. MISPA can be used to quantitatively profile PPIs and as a robust technology for early detection of cancers. This method utilizes unique DNA barcoding of individual proteins coupled with next generation sequencing to quantitatively assess interactions via barcode enrichment. We have tested the feasibility of this technology in the detection of patient immune responses to oropharyngeal carcinomas and in the discovery of novel PPIs in the B-cell receptor (BCR) pathway. To achieve this goal, 96 human papillomavirus (HPV) antigen genes were cloned into pJFT7-cHalo (99% success) and pJFT7-n3xFlag-Halo (100% success) expression vectors. These libraries were expressed via a cell-free in vitro transcription-translation system with 93% and 96% success, respectively. A small-scale study of patient serum interactions with barcoded HPV16 antigens was performed and a HPV proteome-wide study will follow using additional patient samples. In addition, 15 query proteins were cloned into pJFT7_nGST expression vectors, expressed, and purified with 93% success to probe a library of 100 BCR pathway proteins and detect novel PPIs.
ContributorsRinaldi, Capria Lakshmi (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152109-Thumbnail Image.png
Description
During the months from June to November 2012, the city of Bangalore was faced with a serious solid waste management (SWM) crisis. In the wake of the upheaval, the state court declared source segregation to be mandatory. Yet, while the legislation was clear, the pathway towards a course of action

During the months from June to November 2012, the city of Bangalore was faced with a serious solid waste management (SWM) crisis. In the wake of the upheaval, the state court declared source segregation to be mandatory. Yet, while the legislation was clear, the pathway towards a course of action for the transition was not clear and hence, Bangalore was stuck in a state of limbo. The objectives for this thesis spiraled organically from this crisis. The first objective was to examine the gaps in Bangalore's transition to a more sustainable SWM system. Six particular gaps were identified, which in essence, were opportunities to re-shape the system. The gaps identified included: conflicting political agendas, the exclusion of some key actors, and lack of adequate attention to cultural aspects, provision of appropriate incentives, protection of livelihoods and promotion of innovation. Opportunities were found in better incentivization of sustainable SWM goals, protecting livelihoods that depend on waste, enhancing innovation and endorsing local, context based SWM solutions. Building on this understanding of gaps, the second objective was to explore an innovative, local, bottom-up waste-management model called the Vellore Zero Waste Model, and assess its applicability to Bangalore. The adaptability of the model depended on several factors such as, willingness of actors to redefine their roles and change functions, ability of the municipality to assure quality and oversight, willingness of citizen to source segregate, and most importantly, the political will and collective action needed to ensure and sustain the transition. The role of communication as a vital component to facilitate productive stakeholder engagement and to promote role change was evident. Therefore, the third objective of the study was to explore how interpersonal competencies and communication strategies could be used as a tool to facilitate stakeholder engagement and encourage collective action. In addressing these objectives, India was compared with Austria because Austria is often cited as having some of the best SWM practices in the world and has high recycling rates to show for its reputation.
ContributorsRengarajan, Nivedita (Author) / Aggarwal, Rimjhim (Thesis advisor) / Chhetri, Nalini (Committee member) / Manuel-Navarrete, David (Committee member) / Arizona State University (Publisher)
Created2013
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09
168413-Thumbnail Image.png
Description
Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size

Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size has been widely studied throughout the years. It has been shown that size-heterogeneity in organelles has been linked to multiple diseases from abnormal organelle size. Here, a mixture of two sizes of polystyrene beads (0.28 and 0.87 μm) was separated by a ratchet migration mechanism under a continuous flow (20 nL/min). Furthermore, to achieve high-throughput separation, different ratchet devices were designed to achieve high-volume separation. Recently, enormous efforts have been made to manipulate small size DNA and proteins. Here, a microfluidic device comprising of multiple valves acting as insulating constrictions when a potential is applied is presented. The tunability of the electric field gradient is evaluated by a COMSOL model, indicating that high electric field gradients can be reached by deflecting the valve at a certain distance. Experimentally, the tunability of the dynamic constriction was demonstrated by conducting a pressure study to estimate the gap distance between the valve and the substrate at different applied pressures. Finally, as a proof of principle, 0.87 μm polystyrene beads were manipulated by dielectrophoresis. These microfluidic platforms will aid in the understanding of size-heterogeneity of organelles for biomolecular assessment and achieve separation of nanometer-size DNA and proteins by dielectrophoresis.
ContributorsOrtiz, Ricardo (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2021