Matching Items (119)
Filtering by

Clear all filters

Description
Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements

Microfluidics is the study of fluid flow at very small scales (micro -- one millionth of a meter) and is prevalent in many areas of science and engineering. Typical applications include lab-on-a-chip devices, microfluidic fuel cells, and DNA separation technologies. Many of these microfluidic devices rely on micron-resolution velocimetry measurements to improve microchannel design and characterize existing devices. Methods such as micro particle imaging velocimetry (microPIV) and micro particle tracking velocimetry (microPTV) are mature and established methods for characterization of steady 2D flow fields. Increasingly complex microdevices require techniques that measure unsteady and/or three dimensional velocity fields. This dissertation presents a method for three-dimensional velocimetry of unsteady microflows based on spinning disk confocal microscopy and depth scanning of a microvolume. High-speed 2D unsteady velocity fields are resolved by acquiring images of particle motion using a high-speed CMOS camera and confocal microscope. The confocal microscope spatially filters out of focus light using a rotating disk of pinholes placed in the imaging path, improving the ability of the system to resolve unsteady microPIV measurements by improving the image and correlation signal to noise ratio. For 3D3C measurements, a piezo-actuated objective positioner quickly scans the depth of the microvolume and collects 2D image slices, which are stacked into 3D images. Super resolution microPIV interrogates these 3D images using microPIV as a predictor field for tracking individual particles with microPTV. The 3D3C diagnostic is demonstrated by measuring a pressure driven flow in a three-dimensional expanding microchannel. The experimental velocimetry data acquired at 30 Hz with instantaneous spatial resolution of 4.5 by 4.5 by 4.5 microns agrees well with a computational model of the flow field. The technique allows for isosurface visualization of time resolved 3D3C particle motion and high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. Several applications are investigated, including 3D quantitative fluorescence imaging of isotachophoresis plugs advecting through a microchannel and the dynamics of reaction induced colloidal crystal deposition.
ContributorsKlein, Steven Adam (Author) / Posner, Jonathan D (Thesis advisor) / Adrian, Ronald (Committee member) / Chen, Kangping (Committee member) / Devasenathipathy, Shankar (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2011
150045-Thumbnail Image.png
Description
A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research

A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research explores how low volume fraction nanofluids, composed of common base-fluids, interact with light energy. Comparative experimentation and modeling reveals that absorbing light volumetrically (i.e. in the depth of the fluid) is fundamentally different from surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.
ContributorsTaylor, Robert (Author) / Phelan, Patrick E (Thesis advisor) / Adrian, Ronald (Committee member) / Trimble, Steve (Committee member) / Posner, Jonathan (Committee member) / Maracas, George (Committee member) / Arizona State University (Publisher)
Created2011
149782-Thumbnail Image.png
Description
In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to

In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to fragment electrospun hydrogel fibers, and in which surface coatings were made via simple electrostatic interaction and dehydration. These versatile features enable fibrous surface coatings to be applied to virtually any material. Results of this research broadly impact the design of biomaterials which contact cells in the body by directing the consequent cell-material interaction.
ContributorsLouie, Katherine BoYook (Author) / Massia, Stephen P (Thesis advisor) / Bennett, Kevin (Committee member) / Garcia, Antonio (Committee member) / Pauken, Christine (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2011
147931-Thumbnail Image.png
Description

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand for the polymer’s use in clinical settings, as these factors help determine the patients’ and healthcare providers’ use of the drug and estimated treatment time. Based on the literature, it is expected that the natural logarithmic polymer mass degradation forms a linear relationship to time. Polymer hardening was tested by taking video recordings of gelatin plates as they are injected with microneedles and performing RGB analysis on the polymer “beads” created. Our results for the polymer degradation experiments showed that the polymer hardened for all solutions and trials within approximately 1 minute, presenting a small amount of time in which the patient would have to remain motionless in the affected area. Both polymer bead size and drug concentration may have had a modest impact on the hardening time experiments, while bead size may affect the time required for the polymer to degrade. Based on the results, the polymer degradation is expected to last multiple weeks, which may allow for the polymer to be used as a long-term drug delivery system in treatment of basal cell carcinoma.

ContributorsEltze, Maren Caterina (Author) / Vernon, Brent (Thesis director) / Buneo, Christopher (Committee member) / Harrington Bioengineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and time effectiveness. Theoretical data for the time to 60% drug release and the slope and intercept of the log-log plot were collected and subjected to statistical analysis in JMP. Since the scope of this project focuses on microparticle surface degradation drug release with no drug diffusion, the characteristic variables relating to the slope (n = diffusional release exponent) and the intercept (k = kinetic constant) do not directly apply to the distribution model within the scope of the research. However, these variables are useful for analysis when the Mathcad template is applied to other types of drug release models.

ContributorsHan, Priscilla (Author) / Vernon, Brent (Thesis director) / Nickle, Jacob (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150215-Thumbnail Image.png
Description
Multiphase flows are an important part of many natural and technological phe- nomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impos- sible and

Multiphase flows are an important part of many natural and technological phe- nomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impos- sible and experimental investigations very difficult. Thus, high-fidelity numerical simulations can play a pivotal role in understanding these systems. This disserta- tion describes numerical methods developed for complex multiphase flows and the simulations performed using these methods. First, the issue of multiphase code verification is addressed. Code verification answers the question "Is this code solving the equations correctly?" The method of manufactured solutions (MMS) is a procedure for generating exact benchmark solutions which can test the most general capabilities of a code. The chief obstacle to applying MMS to multiphase flow lies in the discontinuous nature of the material properties at the interface. An extension of the MMS procedure to multiphase flow is presented, using an adaptive marching tetrahedron style algorithm to compute the source terms near the interface. Guidelines for the use of the MMS to help locate coding mistakes are also detailed. Three multiphase systems are then investigated: (1) the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus, (2) the flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom endwall, and (3) the atomization of a single drop subjected to a high shear turbulent flow. The systems are simulated numerically by solving the full multiphase Navier- Stokes equations coupled to the various equations of state and a level set interface tracking scheme based on the refined level set grid method. The codes have been parallelized using MPI in order to take advantage of today's very large parallel computational architectures. In the first system, the code's ability to handle surface tension and large tem- perature gradients is established. In the second system, the code's ability to sim- ulate simple interface geometries with strong shear is demonstrated. In the third system, the ability to handle extremely complex geometries and topology changes with strong shear is shown.
ContributorsBrady, Peter, Ph.D (Author) / Herrmann, Marcus (Thesis advisor) / Lopez, Juan (Thesis advisor) / Adrian, Ronald (Committee member) / Calhoun, Ronald (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
150329-Thumbnail Image.png
Description
The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum

The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum forcing in the vicinity of the boundary. The flow solver is parallelized using a domain decomposition strategy and message passing interface (MPI), and exhibits linear scaling on as many as 500 processors. A laminar flow case is presented to verify the formal accuracy of the method. The immersed boundary approach is validated by comparison with computations of the flow over a smooth sphere. Simulations are performed at Reynolds numbers of 2.5 × 104 and 1.1 × 105 based on the diameter of the ball and the freestream speed and using grids comprised of more than 1.14 × 109 points. Flow visualizations reveal the location of separation, as well as the delay of complete detachment. Predictions of the aerodynamic forces at both Reynolds numbers are in reasonable agreement with measurements. Energy spectra of the velocity quantify the dominant frequencies of the flow near separation and in the wake. Time-averaged statistics reveal characteristic physical patterns in the flow as well as local trends within dimples. A mechanism of drag reduction due to the dimples is confirmed, and metrics for dimple optimization are proposed.
ContributorsSmith, Clinton E (Author) / Squires, Kyle D (Thesis advisor) / Balaras, Elias (Committee member) / Herrmann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Stanzione, Daniel C (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150092-Thumbnail Image.png
Description
The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.
ContributorsParthasarathy, Praveen Kumar (Author) / Adrian, Ronald (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
150141-Thumbnail Image.png
Description
A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and

A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and their respective temperatures established simultaneously. Polystyrene and silica nanoparticles are synthesized with a variety of temperature-sensitive dyes such as BODIPY, rose Bengal, Rhodamine dyes 6G, 700, and 800, and Nile Blue A and Nile Red. Photographs are taken with a QImaging QM1 Questar EXi Retiga camera while particles are heated from 25 to 70 C and excited at 532 nm with a Coherent DPSS-532 laser. Photographs are converted to intensity images in MATLAB and analyzed for fluorescence intensity, and plots are generated in MATLAB to describe each dye's intensity vs temperature. Regression curves are created to describe change in fluorescence intensity over temperature. Dyes are compared as nanoparticle core material is varied. Large particles are also created to match the camera's optical resolution capabilities, and it is established that intensity values increase proportionally with nanoparticle size. Nile Red yielded the closest-fit model, with R2 values greater than 0.99 for a second-order polynomial fit. By contrast, Rhodamine 6G only yielded an R2 value of 0.88 for a third-order polynomial fit, making it the least reliable dye for temperature measurements using the polynomial model. Of particular interest in this work is Nile Blue A, whose fluorescence-temperature curve yielded a much different shape from the other dyes. It is recommended that future work describe a broader range of dyes and nanoparticle sizes, and use multiple excitation wavelengths to better quantify each dye's quantum efficiency. Further research into the effects of nanoparticle size on fluorescence intensity levels should be considered as the particles used here greatly exceed 2 ìm. In addition, Nile Blue A should be further investigated as to why its fluorescence-temperature curve did not take on a characteristic shape for a temperature-sensitive dye in these experiments.
ContributorsTomforde, Christine (Author) / Phelan, Patrick (Thesis advisor) / Dai, Lenore (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
137205-Thumbnail Image.png
Description
Concurrent with the epidemic of childhood obesity (17% of adolescents), an unprecedented world-wide increase in the prevalence of several adiposity-related complications (including fatty liver disease (hepatic steatosis), type 2 diabetes and early cardiovascular disorders) in this age group, has emerged. Two principle environmental variables play an essential role in the

Concurrent with the epidemic of childhood obesity (17% of adolescents), an unprecedented world-wide increase in the prevalence of several adiposity-related complications (including fatty liver disease (hepatic steatosis), type 2 diabetes and early cardiovascular disorders) in this age group, has emerged. Two principle environmental variables play an essential role in the development and maintenance of obesity and in disturbing glucose homeostasis: a lack of physical exercise and overnutrition, i.e., high carbohydrate and high fat diets (HFD). It was our laboratory's intention to develop a rodent model to examine whether the metabolic instability observed in human pubertal children is also present in maturing rats and whether a HFD during this maturational period enhances adipose-related complications with or without an increase in body weight. We hypothesized that maturing Sprague-Dawley rats would reveal a profile of metabolic disturbances and that a disruption of the hyperbolic arrangement between insulin sensitivity and insulin release would be evident (statistically significant changes in fasting hyperinsulinemia, insulin resistance, and insulin release) indicating a high risk environment for future cardiometabolic diseases. It was observed that pubertal rats are metabolically impaired and that a HFD substantially enhances metabolic deficits with marked disturbance in insulin sensitivity (hyperinsulinemia). Additionally, substantial lipogenesis was observed in visceral and liver tissue, potentially as a result of hyperinsulinemia. Both phenotypes of maturing rats exposed to a HFD (obesity prone and obesity resistant) demonstrated "metabolic obesity" regardless of physical phenotype. These outcomes have relevance in the context of public health, particularly if lipocentricity is viewed as an essential element in the challenge of preventing and/or treating perturbations to the metabolic health of pubertal children.
ContributorsSmith, John Clark (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05