Matching Items (152)
152291-Thumbnail Image.png
Description
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
ContributorsLiu, Hao (Author) / Kuang, Yang (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Lanchier, Nicolas (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2013
152303-Thumbnail Image.png
Description
Purpose: To examine: (1) whether Non-Hispanic Blacks (NHB) and Non-Hispanic Whites (NHW) with diagnosed arthritis differed in self-reported physical activity (PA) levels, (2) if NHB and NHW with arthritis differed on potential correlates of PA based on the Social Ecological Model (Mcleroy et al., 1988), and (3) if PA participation

Purpose: To examine: (1) whether Non-Hispanic Blacks (NHB) and Non-Hispanic Whites (NHW) with diagnosed arthritis differed in self-reported physical activity (PA) levels, (2) if NHB and NHW with arthritis differed on potential correlates of PA based on the Social Ecological Model (Mcleroy et al., 1988), and (3) if PA participation varied by race/ethnicity after controlling for age, gender, education, and BMI. Methods: This study was a secondary data analysis of data collected from 2006-2008 in Chicago, IL as part of the Midwest Roybal Center for Health Promotion. Bivariate analyses were used to assess potential differences between race in meeting either ACR or ACSM PA guidelines. Comparisons by race between potential socio-demographic correlates and meeting physical activity guidelines were assessed using Chi-squares. Potential differences by race in psychosocial, arthritis, and health-related and environmental correlates were assessed using T-tests. Finally, logistic regression analyses were used to examine if race was still associated with PA after controlling for socio-demographic characteristics. Results: A greater proportion of NHW (68.1% and 35.3%) than NHB (46.5% and 20.9%) met both the arthritis-specific and the American College of Sports Medicine (ACSM) recommendations for physical activity, respectively. NHB had significantly lower self-efficacy for exercise and reported greater impairments in physical function compared to NHW. Likewise, NHB reported more crime and less aesthetics within their neighborhood. NHW were 2.56 times more likely to meet arthritis-specific PA guidelines than NHB after controlling for age, gender, education, marital status, and BMI. In contrast, after controlling for sociodemographic characteristics, age and gender were the only significant predictors of meeting ACSM PA guidelines. Discussion: There were significant differences between NHB and NHW individuals with arthritis in meeting PA guidelines. After controlling for age, gender, education, and BMI non-Hispanic White individuals were still significantly more likely to meet PA guidelines. Interventions aimed at promoting higher levels of physical activity among individuals with arthritis need to consider neighborhood aesthetics and crime when designing programs. More arthritis-specific programs are needed in close proximity to neighborhoods in an effort to promote physical activity.
ContributorsChuran, Christopher (Author) / Der Ananian, Cheryl (Thesis advisor) / Adams, Marc (Committee member) / Campbell, Kathryn (Committee member) / Arizona State University (Publisher)
Created2013
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
150711-Thumbnail Image.png
Description
In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, which contends that the feedback is non-GABAergic and is achieved through the modulation of electrical potential in the intersynaptic cleft between cones and horizontal cells. In this study, a continuum spine model of the cone-horizontal cell synaptic circuitry is formulated. This model, a partial differential equation system, incorporates both the GABA and ephaptic feedback mechanisms. Simulation results, in comparison with experiments, indicate that the ephaptic mechanism is necessary in order for the model to capture the major spatial and temporal dynamics of the BIFE effect. In addition, simulations indicate that the GABA mechanism may play some minor modulation role.
ContributorsChang, Shaojie (Author) / Baer, Steven M. (Thesis advisor) / Gardner, Carl L (Thesis advisor) / Crook, Sharon M (Committee member) / Kuang, Yang (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2012
136407-Thumbnail Image.png
Description
With an excessive amount of resources in the United States healthcare system being spent on the treatment of diseases that are largely preventable through lifestyle change, the need for successful physical activity interventions is apparent. Unfortunately an individual's physical activity and health goals are often not supported by the social

With an excessive amount of resources in the United States healthcare system being spent on the treatment of diseases that are largely preventable through lifestyle change, the need for successful physical activity interventions is apparent. Unfortunately an individual's physical activity and health goals are often not supported by the social context of their daily lives. This single-case design study, Walking Intervention through Text messaging for CoHabiting individuals (WalkIT CoHab), looks at the efficacy of a text based adaptive physical activity intervention to promote walking over a three month period and the effects of social support in intervention performance in three pairs of cohabiting pairs of individuals (n=6). Mean step increase from baseline to intervention ranged from 1300 to 3000 steps per day for all individuals, an average 45.87% increase in physical activity. Goal attainment during the intervention ranged from 43.96% to 71.43%, meaning all participants exceeded the 40% success rate predicted by 60th percentile goals. Social support scores for study partners, unlike social support scores for family and friends, were often in the high social support range and had a moderate increase from pre to post visits for most participants. Although there was variation amongst participants, there was a high correlation in physical activity trends and successful goal attainment in each pair of participants. Less ambitious percentile goals and more personalized motivational text messages might be beneficial to some participants. An extended intervention, something the majority of participants expressed interest in, would further support the efficacy of this behavioral intervention and allow for possible long term benefits of social support in the intervention to be investigated.
ContributorsFernandez, Jacqueline Alyssa (Author) / Adams, Marc (Thesis director) / Angadi, Siddhartha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136024-Thumbnail Image.png
Description
Background: Human papillomavirus (HPV) is the cause of 99.7% of cervical cancers. Research of cervical cancer has made this disease mostly curable in the developing world. Head and neck cancer, which is increasingly caused by HPV, still is associated with a mortality rate of 50,000 in the US annually. This

Background: Human papillomavirus (HPV) is the cause of 99.7% of cervical cancers. Research of cervical cancer has made this disease mostly curable in the developing world. Head and neck cancer, which is increasingly caused by HPV, still is associated with a mortality rate of 50,000 in the US annually. This study proposed to evaluate the biology of HPV-16 in head and neck tumors by using RT-qPCR to measure the RNA expression and its relation to physical status of the virus. Methods: This study was to develop an assay that uses RT-qPCR to determine the quantitative expression of HPV-16 RNA coding for proteins E1, E2, E4, E5, E6, and E7 in tumor samples. The assay development started with creation of primers. It went on to test the primers on template DNA through traditional PCR and then on DNA from HPV-16 positive cell lines, SiHa and CaSki, using RT-qPCR. This paper also describes the troubleshooting methods taken for the PCR reaction. Once the primers are verified, the RT-qPCR process can be carried out on RNA purified from tumor samples. Results: No primer sets have been confirmed to produce a product through PCR or RT-qPCR. The primer sequences match up correctly with known sequences for HPV-16 E1, E2, E4, E5, E6, and E7. RT-qPCR showed results consistent with the hypothesis. Conclusion: The RT-qPCR protocol must be optimized to confirm the primer sequences work as desired. Then primers will be used to study physical status and RNA expression in HPV-positive and HPV-negative head and neck tumor samples. This assay can help shed light on which proteins are expressed most in tumors of the head and neck and will aid in the development of future screening and treatment options.
ContributorsKhazanovich, Jakob (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Sundaresan, Sri Krishna (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
135780-Thumbnail Image.png
Description
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown.

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown. Current DMD research uses mdx mice as a model, and while very useful, does not allow the study of cell-autonomous transcriptome changes during the progression of DMD due to the strong inflammatory response, perhaps hiding important therapeutic targets. C. elegans, which has a very weak inflammatory response compared to mdx mice and humans, has been used in the past to study DMD with some success. The worm ortholog of the dystrophin gene has been identified as dys-1 since its mutation phenocopies the progression of the disease and a portion of the human dystrophin gene alleviates symptoms. Importantly, the extracted RNA transcriptome from dys-1 worms showed significant change in gene expression, which needs to be further investigated with the development of a more robust model. Our lab previously published a method to isolate high-quality muscle-specific RNA from worms, which could be used to study such changes at higher resolution. We crossed the dys-1 worms with our muscle-specific strain and demonstrated that the chimeric strain exhibits similar behavioral symptoms as DMD patients as characterized by a shortened lifespan, difficulty in movement, and a decrease in speed. The presence of dys-1 and other members of the dystrophin complex in the body muscle were supported by the development of a resulting phenotype due to RNAi knockdown of each component in the body muscle; however, further experimentation is needed to reinforce this conclusion. Thus, the constructed chimeric C. elegans strain possesses unique characteristics that will allow the study of genetic changes, such as transcriptome rearrangements and dysregulation of miRNA, and how they affect the progression of DMD.
ContributorsNguyen, Thuy-Duyen Cao (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Duchaine, Thomas (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136684-Thumbnail Image.png
Description
microRNAs (miRNAs) are short ~22nt non-coding RNAs that regulate gene output at the post-transcriptional level. Via targeting of degenerate elements primarily in 3'untranslated regions (3'UTR) of mRNAs, miRNAs can target thousands of varying genes and suppress their protein translation. The precise mechanistic function and bio- logical role of miRNAs is

microRNAs (miRNAs) are short ~22nt non-coding RNAs that regulate gene output at the post-transcriptional level. Via targeting of degenerate elements primarily in 3'untranslated regions (3'UTR) of mRNAs, miRNAs can target thousands of varying genes and suppress their protein translation. The precise mechanistic function and bio- logical role of miRNAs is not fully understood and yet it is a major contributor to a pleth- ora of diseases, including neurological disorders, muscular disorders, and cancer. Cer- tain model organisms are valuable in understanding the function of miRNA and there- fore fully understanding the biological significance of miRNA targeting. Here I report a mechanistic analysis of miRNA targeting in C. elegans, and a bioinformatic approach to aid in further investigation of miRNA targeted sequences. A few of the biologically significant mechanisms discussed in this thesis include alternative polyadenylation, RNA binding proteins, components of the miRNA recognition machinery, miRNA secondary structures, and their polymorphisms. This thesis also discusses a novel bioinformatic approach to studying miRNA biology, including computational miRNA target prediction software, and sequence complementarity. This thesis allows a better understanding of miRNA biology and presents an ideal strategy for approaching future research in miRNA targeting.
ContributorsWeigele, Dustin Keith (Author) / Mangone, Marco (Thesis director) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-12
136736-Thumbnail Image.png
Description
An increasingly sedentary population in the United States, specifically with adolescents, is putting youth at risk of future health related trauma and disease. This single-case design study, Walking Intervention Through Text Messaging for Adolescents (WalkIT-A), was used to intervene with a 12-year old, physically inactive male, in an attempt to

An increasingly sedentary population in the United States, specifically with adolescents, is putting youth at risk of future health related trauma and disease. This single-case design study, Walking Intervention Through Text Messaging for Adolescents (WalkIT-A), was used to intervene with a 12-year old, physically inactive male, in an attempt to test the efficacy of a 12-week physical activity program that may help reduce health risks by increasing number of steps walked per day. The components of the intervention consisted of a FitBit Zip pedometer, physical activity education, text messages, monetary incentives, and goal setting that adapted personally to the participant. Mean step count increased by 30% from baseline (mean = 3603 [sd = 1983]) to intervention (mean = 4693 [sd = 2112]); then increased slightly by 6.7% from intervention to withdrawal (mean = 5009 [sd = 2152]). Mean "very active minutes" increased by 45% from baseline (mean = 8.8 [sd = 8.9]) to intervention (mean = 12.8 [sd = 9.6]); then increased by 61.7% from intervention to withdrawal (mean = 20.7 [sd = 8.4]). Weight, BMI, and blood pressure all increased modestly from pre to post. Cardiovascular fitness (estimated VO2 max) improved by 12.5% from pre (25.5ml*kg-1*min-1) to post (28.7ml*kg-1*min-1). The intervention appeared to have a delayed and residual effect on the participant's daily steps and very active minutes. Although the idealistic ABA pattern did not occur, and the participant did not meet the target of 11,500 daily steps, a positive trend toward that target behavior in the latter 1/3rd of the intervention was observed. Results suggest the need for an extended intervention over a longer period of time and customized even further to the participant.
ContributorsLamb, Nicholas Reid (Author) / Adams, Marc (Thesis director) / Ainsworth, Barbara (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-12
137009-Thumbnail Image.png
Description
The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used

The Cannabis plant has historical roots with human beings. The plant produces compounds called cannabinoids, which are responsible for the physiological affects of Cannabis and make it a research candidate for medicinal use. Analysis of the plant and its components will help build a better database that could be used to develop a complete roster of medicinal benefits. Research regarding the cellular protein receptors that bind the cannabinoids may not only help provide reasons explaining why the Cannabis plant could be medicinally relevant, but will also help explain how the receptors originated. The receptors may have been present in organisms before the present day Cannabis plant. So why would there be receptors that bind to cannabinoids? Searching for an endocannabinoid system could help explain the purpose of the cannabinoid receptors and their current structures in humans. Using genetic technologies we are able to take a closer look into the evolutionary history of cannabinoids and the receptors that bind them.
ContributorsSalasnek, Reed Samuel (Author) / Capco, David (Thesis director) / Mangone, Marco (Committee member) / Stump, Edmund (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05