Matching Items (101)
Filtering by

Clear all filters

Description
Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and

Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and associated stigma in the context of the parent-child relationship. This cross-sectional study examined self-reported weight stigma experience and internalization within 42 parent/adolescent dyads to provide greater understanding of how adolescents and parents are experiencing and internalizing weight stigma independently and transversely.
ContributorsMillett, Emma (Author) / McEntee, Mindy (Thesis director) / Adams, Marc (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-12
Description

Understanding learning in fruit flies (D. melanogaster) can lead to many important discoveries about learning in humans due to the large overlap of shared DNA and the appearance of the same diseases in both species. Fruit flies have already been test subjects for many influential research experiments, some of which

Understanding learning in fruit flies (D. melanogaster) can lead to many important discoveries about learning in humans due to the large overlap of shared DNA and the appearance of the same diseases in both species. Fruit flies have already been test subjects for many influential research experiments, some of which earned Nobel Prizes. This study seeks to investigate inhibitory conditioning in a way that differs from the traditional forward pairing inhibitory conditioning. Specifically, this experiment aims to establish inhibitory learning in fruit flies using backward association. The results show that when fruit flies are trained using backward conditioning as opposed to forward conditioning, there is a pattern of preference that differs substantially from the results showing an aversion to the associated odor in forward conditioning. When comparing the data using Two-Factor ANOVA of forward versus backward conditioning, it clearly indicates that the results are significant. Simply by altering the temporal placement of an unconditioned stimulus and a conditioned stimulus, the fruit flies learn significantly differently, switching from an aversion to the paired odor to a preference. Based on these results, fruit flies can be considered capable of inhibitory learning via backward pairing. Further research will consider whether responses become stronger after more repetitions of the training, and summation and retardation tests can be done in order to confirm that the response is, in fact, due to inhibitory conditioning and not just habituation.

ContributorsLawrence, Heidi (Author) / Smith, Brian (Thesis director) / de Belle, John (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168609-Thumbnail Image.png
Description
By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to

By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to temperature or how to model these processes in complex environments. Using the South American locust (Schistocerca cancellata) as a model system, my dissertation addressed this debate and explained how climate limits the persistence of locust populations. Locusts of S. cancellata are serious agricultural pests with occasional outbreaks covering up to 4 million km2 over six countries. Because outbreaks are largely driven by climate, understanding how climate limits the persistence of locusts may help predict crop losses in future climates. To achieve this aim, I integrated observational, experimental, and computational approaches. First, I tested a physiological model of heat stress. By measuring the heat tolerance of locusts under different oxygen concentrations, I demonstrated that heat tolerance depends on oxygen supply during the hatchling stage only. Second, I modeled the geographic distribution of locusts using physiological traits. I started by measuring thermal effects on consumption and defecation of field-captured locusts, and I then used these data to model energy gain in current and future climates. My results indicated that incorporating physiological mechanisms can improve the accuracy of models and alter predicted impacts of climate change. Finally, I explored the causes and consequences of intraspecific variation in heat tolerance. After measuring heat tolerance of locusts in different hydration states and developmental stages, I modeled survival in historical microclimates. My models indicated that recent climate change has amplified the risk of overheating for locusts, and this risk depended strongly on shade availability, hydration state, and developmental stage. Therefore, the survival of locusts in future climates will likely depend on their access to shade and water. Overall, my dissertation argues that modeling physiological mechanisms can improve the ability of biologists to predict the impacts of climate change.
ContributorsYoungblood, Jacob (Author) / Angilletta, Michael (Thesis advisor) / Buckley, Lauren (Committee member) / Cease, Arianne (Committee member) / Smith, Brian (Committee member) / Vanden Brooks, John (Committee member) / Arizona State University (Publisher)
Created2022
168323-Thumbnail Image.png
Description
Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and

Transorbital surgery has gained recent notoriety due to its incorporation into endoscopic skull base surgery. The body of published literature on the field is cadaveric and observation. The pre-clinical studies are focused on the use of the endoscope only. Furthermore the methodology utilised in the published literature is inconsistent and does not embody the optimal principles of scientific experimentation. This body of work evaluates a minimally invasive novel surgical corridor - the transorbital approach - its validity in neurosurgical practice, as well as both qualitatively and quantitatively assessing available technological advances in a robust experimental fashion. While the endoscope is an established means of visualisation used in clinical transorbital surgery, the microscope has never been assessed with respect to the transorbital approach. This question is investigated here and the anatomical and surgical benefits and limitations of microscopic visualisation demonstrated. The comparative studies provide increased knowledge on specifics pertinent to neurosurgeons and other skull base specialists when planning pre-operatively, such as pathology location, involved anatomical structures, instrument maneuvrability and the advantages and disadvantages of the distinct visualisation technologies. This is all with the intention of selecting the most suitable surgical approach and technology, specific to the patient, pathology and anatomy, so as to perform the best surgical procedure. The research findings illustrated in this body of work are diverse, reproducible and applicable. The transorbital surgical corridor has substantive potential for access to the anterior cranial fossa and specific surgical target structures. The neuroquantitative metrics investigated confirm the utility and benefits specific to the respective visualisation technologies i.e. the endoscope and microscope. The most appropriate setting wherein the approach should be used is also discussed. The transorbital corridor has impressive potential, can utilise all available technological advances, promotes multi-disciplinary co-operation and learning amongst clinicians and ultimately, is a means of improving operative patient care.
ContributorsHoulihan, Lena Mary (Author) / Preul, Mark C. (Thesis advisor) / Vernon, Brent (Thesis advisor) / O' Sullivan, Michael G.J. (Committee member) / Lawton, Michael T. (Committee member) / Santarelli, Griffin (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2021
191036-Thumbnail Image.png
Description
Olfactory perception is a complex and multifaceted process that involves the detection of volatile organic compounds by olfactory receptor neurons in the nasal neuroepithelium. Different odorants can elicit different perceived intensities at the same concentration, while direct intensity ratings are vulnerable to framing effects and inconsistent scale usage. Odor perception

Olfactory perception is a complex and multifaceted process that involves the detection of volatile organic compounds by olfactory receptor neurons in the nasal neuroepithelium. Different odorants can elicit different perceived intensities at the same concentration, while direct intensity ratings are vulnerable to framing effects and inconsistent scale usage. Odor perception is genetically determined, with each individual having a unique olfaction "footprint" and sensitivity levels. Genetic factors, age, gender, race, and environmental factors influence olfactory acuity. The olfactory system's complexity makes it challenging to create a standardized comparison system for olfactory perception tests. The COVID-19 pandemic has underscored the importance of olfactory dysfunction, particularly the loss of smell and taste as common symptoms. Research has demonstrated the widespread occurrence of olfactory impairment in various populations, often stemming from post-viral origins, which is the leading cause of permanent smell loss. Utilizing quantitative ranking on a qualitative scale enhances the precision and accuracy when evaluating and drawing conclusions about odor perception and how to mitigate problems caused by external factors. Pairwise comparisons enhance the accuracy and consistency of results and provide a more intuitive way of comparing items. Such ranking techniques can lead to early detection of olfactory disorders and improved diagnostic tools. The COVID-19 pandemic has shed light on the significance of olfactory dysfunction, emphasizing the need for further research and standardized testing methods in olfactory perception.
ContributorsDarden, Jaelyn (Author) / Smith, Brian (Thesis advisor) / Gerkin, Richard (Thesis advisor) / Spackman, Christy (Committee member) / Arizona State University (Publisher)
Created2023
193603-Thumbnail Image.png
Description
Development of the central nervous system is an incredible process that relies on multiple extracellular signaling cues and complex intracellular interactions. Approximately 1500 genes are associated with neurodevelopmental disorders, many of which are linked to a specific biochemical signaling cascade known as Extracellular-Signal Regulated Kinase (ERK1/2). Clearly defined mutations in

Development of the central nervous system is an incredible process that relies on multiple extracellular signaling cues and complex intracellular interactions. Approximately 1500 genes are associated with neurodevelopmental disorders, many of which are linked to a specific biochemical signaling cascade known as Extracellular-Signal Regulated Kinase (ERK1/2). Clearly defined mutations in regulators of the ERK1/2 pathway cause syndromes known as the RASopathies. Symptoms include intellectual disability, developmental delay, cranio-facial and cardiac deficits. Treatments for RASopathies are limited due to an in complete understanding of ERK1/2’s role in brain development. Individuals with Neurofibromatosis Type and Noonan Syndrome, the two most common RASopathies, exhibit aberrant functional and white matter organization in non-invasive imaging studies, however, the contributions of neuronal versus oligodendrocyte deficits to this phenotype are not fully understood. To define the cellular functions of ERK1/2 in motor circuit formation, this body of work focuses on two long-range projection neuron subtypes defined by their neurotransmitter. With genetic mouse models, pathological ERK1/2 in glutamatergic neurons reduces axonal outgrowth, resulting in deficits in activity dependent gene expression and the ability to learn a motor skill task. Restricting pathological ERK1/2 within cortical layer V recapitulates these wiring deficits but not the behavioral learning phenotype. Moreover, it is uncovered that pathological ERK1/2 results in compartmentalized expression pattern of phosphorylated ERK1/2. It is not clear whether ERK1/2 functions are similar in cholinergic neuron populations that mediate attention, memory, and motor control. Basal forebrain cholinergic neuron development relies heavily on NGF-TrKA neurotrophic signaling known to activate ERK1/2. Yet the function of ERK1/2 during cholinergic neuronal specification and differentiation is poorly understood. By selectively deleting ERK1/2 in cholinergic neurons, ERK1/2 is required for activity-dependent maturation of neuromuscular junctions in juvenile mice, but not the establishment of lower motor neuron number. Moreover, ERK1/2 is not required for specification of choline acetyltransferase expressing basal forebrain cholinergic neurons by 14 days of age. However, ERK1/2 may be necessary for BFCN maturation by adulthood. Collectively, these data indicate that glutamatergic neuron-autonomous decreases in long-range axonal outgrowth and modest effects on later stages of cholinergic neuron maintenance may be important aspects of neuropathogenesis in RASopathies.
ContributorsRees, Katherina Pavy (Author) / Newbern, Jason (Thesis advisor) / Olive, Foster (Committee member) / Qiu, Shenfeng (Committee member) / Sattler, Rita (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2024
189311-Thumbnail Image.png
Description
Background: Studies have examined student fruit/vegetable (FV) consumption, selection, and waste related to lunch duration and found that longer duration at lunch was associated with greater consumption, selection, and reduced waste. However, few studies have investigated the relationship between time to eat and FVs. The aim of this research is

Background: Studies have examined student fruit/vegetable (FV) consumption, selection, and waste related to lunch duration and found that longer duration at lunch was associated with greater consumption, selection, and reduced waste. However, few studies have investigated the relationship between time to eat and FVs. The aim of this research is to analyze the relationship between objective time to students took to eat (“time to eat”) as it relates to their fruit and vegetable consumption, selection, and plate waste.in elementary, middle, and high schools. Methods: A secondary analysis of cross-sectional study of 37 Arizona schools to discover the differences in the selection, consumption, and waste of FVs from students (Full N = 2226, Elementary N = 630, Middle School N = 699, High School N = 897) using objective time to eat measures. Zero-inflated negative binomial regressions examined differences in FV grams selected, consumed, and wasted adjusted for sociodemographics including race, ethnicity, eligibility for free or reduced lunch, academic year, and sex and clustering for students within schools. Results are presented across school level (elementary, middle, and high school). Results: The average time taken to eat ranged from 10-12 minutes for all students. The association of time to eat and lunch duration were not closely related (r=0.03, p = 0.172). In the count model for every additional minute spent, there was a 0.5% greater likelihood of selecting FVs for elementary kids among those who took any FVs. In the zero-inflated model, it was found that there was a statistically significant relationship between time spent eating and the selection of fruits and vegetables. For the total sample and high schoolers, a minute more of eating time was associated with a 4.3% and 8.8% greater odds of selecting FV. This means that longer eating time increased the likelihood of choosing fruits and vegetables. The results indicated that the longer students took to eat, the higher the likelihood of consuming more of FVs. Each 10 more minutes spent eating (i.e., time to eat) is associated with a 5% increase in grams of FV selected relative to mean (for those that chose FV) over 1 week this equates to 32 g increase of FV selected. However, for middle schoolers, the time to eat was not found to be significant in relation to the grams of fruits and vegetables consumed. There was some significance in the sociodemographic factors such as gender (all) and other (middle school). There was a relationship between time taken to eat and waste as a proportion for fruits and vegetables. For example, among those among the students who wasted something (as a proportion of selection), each additional 10 minutes of eating time was associated with a .6% decrease in waste relative to the mean (for those who chose fruits and vegetables) over a week, resulting in a decrease in waste percentage of 16.5%. Among high schoolers, males had a slightly higher odds of wasting a proportion of fruits and vegetables. Conclusions: This study aimed to examine the association between the time students take to eat during lunch and their fruit and vegetable (FV) consumption, selection, and plate waste. The findings revealed that the time to eat was related to FV consumption, depending on the school level. However, it was not significantly associated with FV selection or waste. The study emphasized the need for further research on time to eat, distinguishing it from the duration of lunch. Longer lunch periods and adequate time could influence better food choices, increased FV consumption, and reduced waste. The study highlighted the importance of interventions and school policies promoting healthier food choices and providing sufficient time for students to eat. Future research should validate these findings and explore the impact of socialization opportunities on promoting healthier eating habits. Understanding the relationship between lunch duration, time to eat, and students' dietary behaviors can contribute to improved health outcomes and inform effective strategies in school settings.
ContributorsDandridge, Christina Marie (Author) / Adams, Marc (Thesis advisor) / Whisner, Corrie (Committee member) / Bruening, Meg (Committee member) / Arizona State University (Publisher)
Created2023
187723-Thumbnail Image.png
Description
Tools designed to help match people with behaviors they identify as likely to lead to a successful behavioral outcome remain under-researched. This study assessed the effect of a participant-driven behavior-matching intervention on 1) the adoption of a new behavior related to fruit and vegetable (F&V) consumption, 2) study attrition, and

Tools designed to help match people with behaviors they identify as likely to lead to a successful behavioral outcome remain under-researched. This study assessed the effect of a participant-driven behavior-matching intervention on 1) the adoption of a new behavior related to fruit and vegetable (F&V) consumption, 2) study attrition, and 3) changes in F&V consumption. In this two-arm randomized controlled trial, 64 adults who did not meet standard F&V recommendations were allocated to an intervention (n=33) or control group (n=31). Participants in the intervention group ranked 20 F&V-related behaviors according to their perceived likelihood of engagement in the behavior and their perception of the behavior’s efficacy in increasing F&V consumption. Participants in the intervention group were subsequently shown the list of 20 behaviors in order of their provided rankings, with the highest-ranked behaviors at the top, and were asked to choose a behavior they would like to perform daily for 4 weeks. The control group chose from a random-order list of the same 20 behaviors to adopt daily for 4 weeks. During the study period, text messages were sent to all participants 90 minutes before their reported bedtime to collect Yes/No data reflecting successful behavior engagement each day. The binary repeated-measures data collected from the text messages was analyzed using mixed-effects logistic regression, differences in attrition were assessed using log-rank analysis, and change scores in F&V consumption were compared between the two groups using the Man-Whitney U test. P<0.05 indicated significance. The rate of successful behavior adoption did not differ significantly between the two groups (b=0.09, 95%CI= -0.81, 0.98, p=0.85). The log rank test results indicated that there was no significant difference in attrition between the two groups (χ2=2.68, df=1, p=0.10). F&V consumption increased significantly over the 4 weeks in the total sample (Z=-5.86, p<0.001), but no differences in F&V change scores were identified between the control and intervention groups (Z=-0.21, p=0.84). The behavior-matching tool assessed in this study did not significantly improve behavior adoption, study attrition, or F&V intake over 4 weeks.
ContributorsCosgrove, Kelly Sarah (Author) / Wharton, Christopher (Thesis advisor) / Adams, Marc (Committee member) / DesRoches, Tyler (Committee member) / Grebitus, Carola (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2023
157241-Thumbnail Image.png
Description
Objective: It’s not well understood how youth perceive existing fruit and vegetable (FV) marketing materials available in schools. This ancillary study sought to assess the acceptability of FV marketing materials freely available to schools among adolescents in grades 6-12.

Methods: Middle and high school adolescents (n=40; 50% female; 52.5% Hispanic) in

Objective: It’s not well understood how youth perceive existing fruit and vegetable (FV) marketing materials available in schools. This ancillary study sought to assess the acceptability of FV marketing materials freely available to schools among adolescents in grades 6-12.

Methods: Middle and high school adolescents (n=40; 50% female; 52.5% Hispanic) in the Phoenix, AZ area were asked to rank marketing materials (n=35) from favorite to least favorite in four categories: table tents, medium posters, large posters and announcements. Favorites were determined by showing participants two items at a time and having them choose which they preferred; items were displayed to each adolescent in a random order. Adolescents participated in a 20-30 minute interview on their favorite items in each category based on acceptance/attractiveness, comprehension, relevance, motivation and uniqueness of the materials. A content analysis was performed on top rated marketing materials. Top rated marketing materials were determined by the number of times the advertisement was ranked first in its category.

Results: An analysis of the design features of the items indicated that most participants (84%) preferred marketing materials with more than 4 color groups. Participant preference of advertisement length and word count was varied. A total of 5 themes and 20 subthemes emerged when participants discussed their favorite FV advertisements. Themes included: likes (e.g., colors, length, FV shown), dislikes (e.g., length, FV shown), health information (e.g., vitamin shown), comprehension (e.g., doesn’t recognize FV), and social aspects (e.g., peer opinion). Peer opinion often influenced participant opinion on marketing materials. Participants often said peers wouldn’t like the advertisements shown: “…kids my age think that vegetables are not good, and they like food more than vegetables.” Fruits and vegetable pictured as well as the information in the marketing materials also influenced adolescent preference.

Conclusion: Students preferred advertisements with more color and strong visual aspects. Word count had minimal influence on their opinions of the marketing materials, while information mentioned and peer opinion did have a positive effect. Further research needs to be done to determine if there is a link between adolescent preferences on FV marketing materials and FV consumption habits.
ContributorsPisano, Sydney Alexis (Author) / Bruening, Meg (Thesis advisor) / Adams, Marc (Committee member) / Grgich, Traci (Committee member) / Arizona State University (Publisher)
Created2019
156939-Thumbnail Image.png
Description
The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical

The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits and a possible source of the behavioral and cognitive deficits. To evaluate these long-range connectivity and behavioral issues in a cell-autonomous manner, MEK1 loss- and gain-of-function (LoF and GoF) mutations were induced solely in the cortical glutamatergic neurons using a Nex:Cre mouse model. Layer autonomous effects of the cortex were also tested in the GoF mouse using a layer 5 specific Rbp4:Cre mouse. Immunohistochemical analysis showed that activated ERK1/2 (P-ERK1/2) was expressed in high levels in the axonal compartments and reduced levels in the soma when compared to control mice. Axonal tract tracing using a lipophilic dye and an adeno-associated viral (AAV) tract tracing vector, identified significant corticospinal tract (CST) elongation deficits in the LoF and GoF Nex:Cre mouse and in the GoF Rbp4:Cre mouse. AAV tract tracing was further used to identify significant deficits in axonal innervation of the contralateral cortex, the dorsal striatum, and the hind brain of the Nex:Cre GoF mouse and the contralateral cortex and dorsal striatum of the Rbp4:Cre mouse. Behavioral testing of the Nex:Cre GoF mouse indicated deficits in motor learning acquisition while the Rbp4:Cre GoF mouse showed no failure to acquire motor skills as tested. Analysis of the expression levels of the immediate early gene ARC in Nex:Cre and Rbp4:Cre mice showed a specific reduction in a cell- and layer-autonomous manner. These findings suggest that hyperactivation of the RAS/MAPK pathway in cortical glutamatergic neurons, induces changes to the expression patterns of P-ERK1/2, disrupts axonal elongation and innervation patterns, and disrupts motor learning abilities.
ContributorsBjorklund, George Reed (Author) / Newbern, Jason M (Thesis advisor) / Neisewander, Janet (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2018