Matching Items (123)
136736-Thumbnail Image.png
Description
An increasingly sedentary population in the United States, specifically with adolescents, is putting youth at risk of future health related trauma and disease. This single-case design study, Walking Intervention Through Text Messaging for Adolescents (WalkIT-A), was used to intervene with a 12-year old, physically inactive male, in an attempt to

An increasingly sedentary population in the United States, specifically with adolescents, is putting youth at risk of future health related trauma and disease. This single-case design study, Walking Intervention Through Text Messaging for Adolescents (WalkIT-A), was used to intervene with a 12-year old, physically inactive male, in an attempt to test the efficacy of a 12-week physical activity program that may help reduce health risks by increasing number of steps walked per day. The components of the intervention consisted of a FitBit Zip pedometer, physical activity education, text messages, monetary incentives, and goal setting that adapted personally to the participant. Mean step count increased by 30% from baseline (mean = 3603 [sd = 1983]) to intervention (mean = 4693 [sd = 2112]); then increased slightly by 6.7% from intervention to withdrawal (mean = 5009 [sd = 2152]). Mean "very active minutes" increased by 45% from baseline (mean = 8.8 [sd = 8.9]) to intervention (mean = 12.8 [sd = 9.6]); then increased by 61.7% from intervention to withdrawal (mean = 20.7 [sd = 8.4]). Weight, BMI, and blood pressure all increased modestly from pre to post. Cardiovascular fitness (estimated VO2 max) improved by 12.5% from pre (25.5ml*kg-1*min-1) to post (28.7ml*kg-1*min-1). The intervention appeared to have a delayed and residual effect on the participant's daily steps and very active minutes. Although the idealistic ABA pattern did not occur, and the participant did not meet the target of 11,500 daily steps, a positive trend toward that target behavior in the latter 1/3rd of the intervention was observed. Results suggest the need for an extended intervention over a longer period of time and customized even further to the participant.
ContributorsLamb, Nicholas Reid (Author) / Adams, Marc (Thesis director) / Ainsworth, Barbara (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-12
137685-Thumbnail Image.png
Description
Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources

Influenza remains a constant concern for public health agencies across the nation and worldwide. Current methods of surveillance suffice but they fall short of their true potential. Incorporation of evolutionary data and analysis through studies such as phylogeography could reveal geographic sources of variation. Identification and targeting of such sources for public health initiatives could yield increased effectiveness of influenza treatments. As it stands there is a lack of evolutionary data available for such use, particularly in the southwest. Our study focused on the sequencing and phylogeography of southwestern Influenza A samples from the Mayo Clinic. We fully sequenced two neuraminidase genes and combined them with archived sequence data from the Influenza Research Database. Using RAxML we identified the clade containing our sequences and performed a phylogeographic analysis using ZooPhy. The resultant data were analyzed using programs such as SPREAD and Tracer. Our results show that the southwest sequences emerged from California and the ancestral root of the clade came from New York. Our Bayesian maximum clade credibility (MCC) tree data and SPREAD analysis implicates California as a source of influenza variation in the United States. This study demonstrates that phylogeography is a viable tool to incorporate evolutionary data into existing forms of influenza surveillance.
ContributorsTurnock, Adam Ryan (Author) / Scotch, Matthew (Thesis director) / Halden, Rolf (Committee member) / Pycke, Benny (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137712-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated

Trichloroethene (TCE) and hexavalent chromium [Cr(VI)] are toxic and carcinogenic contaminants found in drinking water resources across the United States. A series of Bench-scale treatability studies were conducted to evaluate the effectiveness of a consortium of facultative and strictly anaerobic bacteria, KB-1®, to remove TCE and Cr(VI) from a contaminated aquifer in San Diego. These series of treatability studies were also performed to prepare data and mature packed sediment columns for the deployment of the In Situ Microcosm Array (ISMA), a diagnostic device for determining optimal treatments for a contaminated aquifer, at this particular site. First, a control panel for the ISMA’s Injection Module (IM) was created in order to deliver nutrients to the columns. Then, a column treatability study was performed in order to produce columns with an established KB-1® consortium, so that all TCE in the column influent was converted to ethene by the time it had exited the column. Finally, a batch bottle treatability study was performed to determine KB-1®’s effectiveness at remediating both TCE and Cr(VI) from the San Diego ground-water samples. The results from the column study found that KB-1® was able to reduce TCE in mineral media. However, in the presence of site ground-water for the batch bottle study, KB-1® was only able to reduce Cr(VI) and no TCE dechlorination was observed. This result suggests that the dechlorinating culture cannot survive prolonged exposure to Cr(VI). Therefore, future work may involve repeating the batch bottle study with Cr(VI) removed from the groundwater prior to inoculation to determine if KB-1® is then able to dechlorinate TCE.
ContributorsDuong, Benjamin Taylor (Author) / Halden, Rolf (Thesis director) / Torres, Cesar (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Dance (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
137727-Thumbnail Image.png
Description
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective,

Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.
ContributorsNorth, Emily Jean (Co-author) / Halden, Rolf (Co-author, Thesis director) / Mikhail, Chester (Committee member) / Hurlbut, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
136444-Thumbnail Image.png
Description
The WalkIT Study is a mobile health study examining the efficacy of a four month text message-based intervention for increasing physical activity among 96 overweight adults. The purpose of this thesis is to examine the potency of the different types of motivational prompt-to-action text messages used in the WalkIT Study

The WalkIT Study is a mobile health study examining the efficacy of a four month text message-based intervention for increasing physical activity among 96 overweight adults. The purpose of this thesis is to examine the potency of the different types of motivational prompt-to-action text messages used in the WalkIT Study for increasing steps per day by examining the individual messages, creating qualitative themes and comparing themed groups, and evaluating the interaction between demographic subgroups and themed groups. A total of nine themes was created. The results found that Message 13, “It doesn't matter how old you are – it's never too early or too late to become physically active so start today; only then will you start to see results!”, had the highest median step count (7129 steps) and Message 71, “It's ok if you can't reach your goal today. Just push yourself more tomorrow.”, had the lowest median step count (5054 steps). For themes, the highest median step count (6640 steps) was found in Theme 6, Challenges, and the lowest median step count (5450 steps) was found in Theme 9, Unconditional Feedback. Theme 6 (Challenges) had the highest median step count for females, Theme 7 (Everyday Tips) had the highest median step count for males, Theme 4 (Nutrition) had the highest median step count for the 18-42 group, Theme 6 (Challenges) had the highest median step count for the 43-61 group, and Theme 9 (Unconditional Feedback) had the lowest median step count for both genders and both age groups. The results suggest the usefulness of analyzing the effectiveness of individual motivational text messages, themes, and the interaction between demographic groups and themes in physical activity interventions.
ContributorsBhuiyan, Nishat Anjum (Author) / Adams, Marc (Thesis director) / Ainsworth, Barbara (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
149595-Thumbnail Image.png
Description
The objective of this research was to predict the persistence of potential future contaminants in indirect potable reuse systems. In order to accurately estimate the fates of future contaminants in indirect potable reuse systems, results describing persistence from EPI Suite were modified to include sorption and oxidation. The target future

The objective of this research was to predict the persistence of potential future contaminants in indirect potable reuse systems. In order to accurately estimate the fates of future contaminants in indirect potable reuse systems, results describing persistence from EPI Suite were modified to include sorption and oxidation. The target future contaminants studied were the approximately 2000 pharmaceuticals currently undergoing testing by United States Food and Drug Administration (US FDA). Specific organic substances such as analgesics, antibiotics, and pesticides were used to verify the predicted half-lives by comparing with reported values in the literature. During sub-surface transport, an important component of indirect potable reuse systems, the effects of sorption and oxidation are important mechanisms. These mechanisms are not considered by the quantitative structure activity relationship (QSAR) model predictions for half-lives from EPI Suite. Modifying the predictions from EPI Suite to include the effects of sorption and oxidation greatly improved the accuracy of predictions in the sub-surface environment. During validation, the error was reduced by over 50% when the predictions were modified to include sorption and oxidation. Molecular weight (MW) is an important criteria for estimating the persistence of chemicals in the sub-surface environment. EPI Suite predicts that high MW compounds are persistent since the QSAR model assumes steric hindrances will prevent transformations. Therefore, results from EPI Suite can be very misleading for high MW compounds. Persistence was affected by the total number of halogen atoms in chemicals more than the sum of N-heterocyclic aromatics in chemicals. Most contaminants (over 90%) were non-persistent in the sub-surface environment suggesting that the target future drugs do not pose a significant risk to potable reuse systems. Another important finding is that the percentage of compounds produced from the biotechnology industry is increasing rapidly and should dominate the future production of pharmaceuticals. In turn, pharmaceuticals should become less persistent in the future. An evaluation of indirect potable reuse systems that use reverse osmosis (RO) for potential rejection of the target contaminants was performed by statistical analysis. Most target compounds (over 95%) can be removed by RO based on size rejection and other removal mechanisms.
ContributorsLim, Seung (Author) / Fox, Peter (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2011
148391-Thumbnail Image.png
Description

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and gauged their risk perception. Results from our analysis indicate that the students were knowledgeable about Covid-19 and were changing their habits and engaging with preventive measures. Results further suggest that students were prepared for the pandemic in terms of resources and were exhibiting high-risk perceptions. The data also revealed that students who were being cautious and engaging with preventive behaviors had a higher risk-perception than individuals who were not. As for individuals who were prepared for the pandemic in terms of supplies, their risk perception was similar to those who did not have supplies. Individuals who were prepared and capable of providing a single caretaker to tend to their sick household members and isolate them in a separate room had a higher risk perception than those who could not. These results can help describe how college students will react to a future significant event, what resources students may be in need of, and how universities can take additional steps to keep their students safe and healthy. The results from this study and recommendations will provide for a stronger and more understanding campus community during times of distress and can improve upon already established university protocols for health crises and even natural disasters.

ContributorsNaqvi, Avina Itrat (Co-author) / Shaikh, Sara (Co-author) / Jehn, Megan (Thesis director) / Adams, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148361-Thumbnail Image.png
Description

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and gauged their risk-perception. Results from our analysis indicate that the students were knowledgeable about Covid-19 and were changing their habits and engaging with preventive measures. Results further suggest that students were prepared for the pandemic in terms of resources and were exhibiting high-risk perceptions. The data also revealed that students who were being cautious and engaging with preventive behaviors had a higher risk-perception than individuals who were not. As for individuals who were prepared for the pandemic in terms of supplies, their risk perception was similar to those who did not have supplies. Individuals who were prepared and capable of providing a single caretaker to tend to their sick household members and isolate them in a separate room had a higher risk perception than those who could not. These results can help describe how college students will react to a future significant event, what resources students may be in need of, and how universities can take additional steps to keep their students safe and healthy. The results from this study and recommendations will provide for a stronger and more understanding campus community during times of distress and can improve upon already established university protocols for health crises and even natural disasters.

ContributorsShaikh, Sara (Co-author) / Naqvi, Avina (Co-author) / Jehn, Megan (Thesis director) / Adams, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136304-Thumbnail Image.png
Description
A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with the goal of establishing the state of knowledge and existing information gaps. Publications on IL toxicity were collected from the

A meta-analysis was conducted to compare the total amount of ionic liquid (IL) literature (n = 39,036) to the body of publications dealing with IL toxicity (n = 213), with the goal of establishing the state of knowledge and existing information gaps. Publications on IL toxicity were collected from the SciFinder database and sorted by cation and model organism studied. Studies focusing on pharmacokinetics and drug development were excluded, as were structure-activity relationship methods of data collection. Total publishing activity was used as a measure to gauge research and industrial usage of ILs as well as the knowledge base of toxicology. Five of the most commonly studied IL cations were identified and used to establish a relationship between toxicity data and potential of commercial use: imidazolium, ammonium, phosphonium, pyridinium, and pyrrolidinium. Toxicology publications for all IL cations represented 1.2% ± 0.62% of the total publishing activity; compared with other industrial chemicals, these numbers indicate that there is still a paucity of studies on the adverse effects of this class of chemicals. In vitro models and marine bacteria were the most frequently studied biological systems, contributing 18% and 15%, respectively, to the total body of IL toxicity studies. Whole animal studies (n = 87) comprised 41% of IL toxicity studies, with a subset of in vivo mammalian models consisting of 8%. Human toxicology data were found to be limited to in vitro analyses, indicating substantial knowledge gaps. Risks from long-term and chronic low-level exposure to ILs have not been established yet for any model organisms, reemphasizing the need for filling crucial knowledge gaps concerning human health effects and the environmental safety of ILs. Adding to the existing knowledge of the molecular toxicity characteristics of ILs can help inform the design of greener, less toxic and more benign IL technologies.
ContributorsHeckenbach, Mary (Co-author) / Halden, Rolf (Co-author, Thesis director) / Jehn, Megan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05