Matching Items (109)
Filtering by

Clear all filters

193573-Thumbnail Image.png
Description
Janus Transition Metal Dichalcogenides (TMDs) are emerging 2D quantum materials with an asymmetric chalcogen configuration that induces an out-of-plane dipole moment. Their synthesis has been a limiting factor in exploring these systems' many-body physics and interactions. This dissertation examines the challenges associated with synthesis and charts the excitonic landscape of

Janus Transition Metal Dichalcogenides (TMDs) are emerging 2D quantum materials with an asymmetric chalcogen configuration that induces an out-of-plane dipole moment. Their synthesis has been a limiting factor in exploring these systems' many-body physics and interactions. This dissertation examines the challenges associated with synthesis and charts the excitonic landscape of Janus crystals by proposing the development of the Selective Epitaxy and Atomic Replacement (SEAR) technique. SEAR utilizes ionized radical precursors to modify TMD monolayers into their Janus counterparts selectively. The synthesis is coupled with optical spectroscopy and monitored in real-time, enabling precise control of reaction kinetics and the structural evolution of Janus TMDs. The results demonstrate the synthesis of Janus TMDs at ambient temperatures, reducing defects and preserving the structural integrity with the hitherto best-reported exciton linewidth emission value, indicating ultra-high optical quality. Cryogenic optical spectroscopy (4K) coupled with a magnetic field on Janus monolayers has allowed the isolation of excitonic transitions and the identification of charged exciton complexes. Further study into macroscopic and microscopic defects reveals that structural asymmetry results in the spontaneous formation of 2D Janus Nanoscrolls from an in-plane strain. The chalcogen arrangement in these structures dictates two types of scrolling dynamics that form Archimedean or inverted C-scrolls. High-resolution scanning transmission electron microscopy of these superlattices shows a preferential orientation of scrolling and formation of Moiré patterns. These materials' thermodynamically favorable defect states are identified and shown to be optically active. The encapsulation of Janus TMDs with hexagonal Boron Nitride (h-BN) has allowed isolation defect transitions. DFT coupled with power-dependent PL spectroscopy at 4K shows the broad defect band to be a convolution of individual defect states with extremely narrow linewidth (2 meV) indicative of a two-state quantum system. The research presents a comprehensive synthesis approach with insights into the structural and morphological stability of 2D Janus layers, establishing a complete structure-property correlation of optical transitions and defect states, broadening the scope for practical applications in quantum information technologies.
ContributorsSayyad, Mohammed Yasir (Author) / Tongay, Sefaattin (Thesis advisor) / Esqueda, Ivan S (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2024
156637-Thumbnail Image.png
Description
Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied

Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied to the ionosphere, which is a domain of practical interest due to its effects

on infrastructures that depend on satellite communication and remote sensing. This

dissertation consists of three main studies that propose strategies to improve space-

weather specification during ionospheric extreme events, but are generally applicable

to Earth-system models:

Topic I applies the LETKF to estimate ion density with an idealized model of

the ionosphere, given noisy synthetic observations of varying sparsity. Results show

that the LETKF yields accurate estimates of the ion density field and unobserved

components of neutral winds even when the observation density is spatially sparse

(2% of grid points) and there is large levels (40%) of Gaussian observation noise.

Topic II proposes a targeted observing strategy for data assimilation, which uses

the influence matrix diagnostic to target errors in chosen state variables. This

strategy is applied in observing system experiments, in which synthetic electron density

observations are assimilated with the LETKF into the Thermosphere-Ionosphere-

Electrodynamics Global Circulation Model (TIEGCM) during a geomagnetic storm.

Results show that assimilating targeted electron density observations yields on

average about 60%–80% reduction in electron density error within a 600 km radius of

the observed location, compared to 15% reduction obtained with randomly placed

vertical profiles.

Topic III proposes a methodology to account for systematic model bias arising

ifrom errors in parametrized solar and magnetospheric inputs. This strategy is ap-

plied with the TIEGCM during a geomagnetic storm, and is used to estimate the

spatiotemporal variations of bias in electron density predictions during the

transitionary phases of the geomagnetic storm. Results show that this strategy reduces

error in 1-hour predictions of electron density by about 35% and 30% in polar regions

during the main and relaxation phases of the geomagnetic storm, respectively.
ContributorsDurazo, Juan, Ph.D (Author) / Kostelich, Eric J. (Thesis advisor) / Mahalov, Alex (Thesis advisor) / Tang, Wenbo (Committee member) / Moustaoui, Mohamed (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2018
156760-Thumbnail Image.png
Description
Recently, two-dimensional (2D) materials have emerged as a new class of materials with highly attractive electronic, optical, magnetic, and thermal properties. However, there exists a sub-category of 2D layers wherein constituent metal atoms are arranged in a way that they form weakly coupled chains confined in the 2D landscape. These

Recently, two-dimensional (2D) materials have emerged as a new class of materials with highly attractive electronic, optical, magnetic, and thermal properties. However, there exists a sub-category of 2D layers wherein constituent metal atoms are arranged in a way that they form weakly coupled chains confined in the 2D landscape. These weakly coupled chains extend along particular lattice directions and host highly attractive properties including high thermal conduction pathways, high-mobility carriers, and polarized excitons. In a sense, these materials offer a bridge between traditional one-dimensional (1D) materials (nanowires and nanotubes) and 2D layered systems. Therefore, they are often referred as pseudo-1D materials, and are anticipated to impact photonics and optoelectronics fields.

This dissertation focuses on the novel growth routes and fundamental investigation of the physical properties of pseudo-1D materials. Example systems are based on transition metal chalcogenide such as rhenium disulfide (ReS2), titanium trisulfide (TiS3), tantalum trisulfide (TaS3), and titanium-niobium trisulfide (Nb(1-x)TixS3) ternary alloys. Advanced growth, spectroscopy, and microscopy techniques with density functional theory (DFT) calculations have offered the opportunity to understand the properties of these materials both experimentally and theoretically. The first controllable growth of ReS2 flakes with well-defined domain architectures has been established by a state-of-art chemical vapor deposition (CVD) method. High-resolution electron microscopy has offered the very first investigation into the structural pseudo-1D nature of these materials at an atomic level such as the chain-like features, grain boundaries, and local defects.

Pressure-dependent Raman spectroscopy and DFT calculations have investigated the origin of the Raman vibrational modes in TiS3 and TaS3, and discovered the unusual pressure response and its effect on Raman anisotropy. Interestingly, the structural and vibrational anisotropy can be retained in the Nb(1-x)TixS3 alloy system with the presence of phase transition at a nominal Ti alloying limit. Results have offered valuable experimental and theoretical insights into the growth routes as well as the structural, optical, and vibrational properties of typical pseudo-1D layered systems. The overall findings hope to shield lights to the understanding of this entire class of materials and benefit the design of 2D electronics and optoelectronics.
ContributorsWu, Kedi (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2018
156608-Thumbnail Image.png
Description
There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in

There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in these novel 2D materials gives rise to highly anisotropic physical properties that enable unique applications in next-gen electronics and optoelectronics. For example, higher carrier mobility along one preferential crystal direction for anisotropic field effect transistors and anisotropic photon absorption for polarization-sensitive photodetectors.

This dissertation endeavors to address two key challenges towards practical application of anisotropic materials. One is the scalable production of high quality 2D anisotropic thin films, and the other is the controllability over anisotropy present in synthesized crystals. The investigation is focused primarily on rhenium disulfide because of its chemical similarity to conventional 2D transition metal dichalcogenides and yet anisotropic nature. Carefully designed vapor phase deposition has been demonstrated effective for batch synthesis of high quality ReS2 monolayer. Heteroepitaxial growth proves to be a feasible route for controlling anisotropic directions. Scanning/transmission electron microscopy and angle-resolved Raman spectroscopy have been extensively applied to reveal the structure-property relationship in synthesized 2D anisotropic layers and their heterostructures.
ContributorsChen, Bin, 1968- (Author) / Tongay, Sefaattin (Thesis advisor) / Bertoni, Mariana (Committee member) / Chang, Lan-Yun (Committee member) / Arizona State University (Publisher)
Created2018
156666-Thumbnail Image.png
Description
Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium

Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium chalcogenides, belonging to the group III-VI compounds, are a new class of 2D semiconductors that carry a variety of interesting properties including wide spectrum coverage of their bandgaps and thus are promising candidates for next generation electronic and optoelectronic devices. Pushing these materials toward applications requires more controllable synthesis methods and facile routes for engineering their properties on demand.

In this dissertation, vapor phase transport is used to synthesize layer structured gallium chalcogenide nanomaterials with highly controlled structure, morphology and properties, with particular emphasis on GaSe, GaTe and GaSeTe alloys. Multiple routes are used to manipulate the physical properties of these materials including strain engineering, defect engineering and phase engineering. First, 2D GaSe with controlled morphologies is synthesized on Si(111) substrates and the bandgap is significantly reduced from 2 eV to 1.7 eV due to lateral tensile strain. By applying vertical compressive strain using a diamond anvil cell, the band gap can be further reduced to 1.4 eV. Next, pseudo-1D GaTe nanomaterials with a monoclinic structure are synthesized on various substrates. The product exhibits highly anisotropic atomic structure and properties characterized by high-resolution transmission electron microscopy and angle resolved Raman and photoluminescence (PL) spectroscopy. Multiple sharp PL emissions below the bandgap are found due to defects localized at the edges and grain boundaries. Finally, layer structured GaSe1-xTex alloys across the full composition range are synthesized on GaAs(111) substrates. Results show that GaAs(111) substrate plays an essential role in stabilizing the metastable single-phase alloys within the miscibility gaps. A hexagonal to monoclinic phase crossover is observed as the Te content increases. The phase crossover features coexistence of both phases and isotropic to anisotropic structural transition.

Overall, this work provides insights into the controlled synthesis of gallium chalcogenides and opens up new opportunities towards optoelectronic applications that require tunable material properties.
ContributorsCai, Hui, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Dwyer, Christian (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
157241-Thumbnail Image.png
Description
Objective: It’s not well understood how youth perceive existing fruit and vegetable (FV) marketing materials available in schools. This ancillary study sought to assess the acceptability of FV marketing materials freely available to schools among adolescents in grades 6-12.

Methods: Middle and high school adolescents (n=40; 50% female; 52.5% Hispanic) in

Objective: It’s not well understood how youth perceive existing fruit and vegetable (FV) marketing materials available in schools. This ancillary study sought to assess the acceptability of FV marketing materials freely available to schools among adolescents in grades 6-12.

Methods: Middle and high school adolescents (n=40; 50% female; 52.5% Hispanic) in the Phoenix, AZ area were asked to rank marketing materials (n=35) from favorite to least favorite in four categories: table tents, medium posters, large posters and announcements. Favorites were determined by showing participants two items at a time and having them choose which they preferred; items were displayed to each adolescent in a random order. Adolescents participated in a 20-30 minute interview on their favorite items in each category based on acceptance/attractiveness, comprehension, relevance, motivation and uniqueness of the materials. A content analysis was performed on top rated marketing materials. Top rated marketing materials were determined by the number of times the advertisement was ranked first in its category.

Results: An analysis of the design features of the items indicated that most participants (84%) preferred marketing materials with more than 4 color groups. Participant preference of advertisement length and word count was varied. A total of 5 themes and 20 subthemes emerged when participants discussed their favorite FV advertisements. Themes included: likes (e.g., colors, length, FV shown), dislikes (e.g., length, FV shown), health information (e.g., vitamin shown), comprehension (e.g., doesn’t recognize FV), and social aspects (e.g., peer opinion). Peer opinion often influenced participant opinion on marketing materials. Participants often said peers wouldn’t like the advertisements shown: “…kids my age think that vegetables are not good, and they like food more than vegetables.” Fruits and vegetable pictured as well as the information in the marketing materials also influenced adolescent preference.

Conclusion: Students preferred advertisements with more color and strong visual aspects. Word count had minimal influence on their opinions of the marketing materials, while information mentioned and peer opinion did have a positive effect. Further research needs to be done to determine if there is a link between adolescent preferences on FV marketing materials and FV consumption habits.
ContributorsPisano, Sydney Alexis (Author) / Bruening, Meg (Thesis advisor) / Adams, Marc (Committee member) / Grgich, Traci (Committee member) / Arizona State University (Publisher)
Created2019
156993-Thumbnail Image.png
Description
Nanoporous materials, with pore sizes less than one nanometer, have been incorporated as filler materials into state-of-the-art polyamide-based thin-film composite membranes to create thin-film nanocomposite (TFN) membranes for reverse osmosis (RO) desalination. However, these TFN membranes have inconsistent changes in desalination performance as a result of filler incorporation. The

Nanoporous materials, with pore sizes less than one nanometer, have been incorporated as filler materials into state-of-the-art polyamide-based thin-film composite membranes to create thin-film nanocomposite (TFN) membranes for reverse osmosis (RO) desalination. However, these TFN membranes have inconsistent changes in desalination performance as a result of filler incorporation. The nano-sized filler’s transport role for enhancing water permeability is unknown: specifically, there is debate around the individual transport contributions of the polymer, nanoporous particle, and polymer/particle interface. Limited studies exist on the pressure-driven water transport mechanism through nanoporous single-crystal nanoparticles. An understanding of the nanoporous particles water transport role in TFN membranes will provide a better physical insight on the improvement of desalination membranes.

This dissertation investigates water permeation through single-crystal molecular sieve zeolite A particles in TFN membranes in four steps. First, the meta-analysis of nanoporous materials (e.g., zeolites, MOFs, and graphene-based materials) in TFN membranes demonstrated non-uniform water-salt permselectivity performance changes with nanoporous fillers. Second, a systematic study was performed investigating different sizes of non-porous (pore-closed) and nanoporous (pore-opened) zeolite particles incorporated into conventionally polymerized TFN membranes; however, the challenges of particle aggregation, non-uniform particle dispersion, and possible particle leaching from the membranes limit analysis. Third, to limit aggregation and improve dispersion on the membrane, a TFN-model membrane synthesis recipe was developed that immobilized the nanoparticles onto the support membranes surface before the polymerization reaction. Fourth, to quantify the possible water transport pathways in these membranes, two different resistance models were employed.

The experimental results show that both TFN and TFN-model membranes with pore-opened particles have higher water permeance compared to those with pore-closed particles. Further analysis using the resistance in parallel and hybrid models yields that water permeability through the zeolite pores is smaller than that of the particle/polymer interface and higher than the water permeability of the pure polymer. Thus, nanoporous particles increase water permeability in TFN membranes primarily through increased water transport at particle/polymer interface. Because solute rejection is not significantly altered in our TFN and TFN-model systems, the results reveal that local changes in the polymer region at the polymer/particle interface yield high water permeability.
ContributorsCay Durgun, Pinar (Author) / Lind, Mary Laura (Thesis advisor) / Lin, Jerry Y. S. (Committee member) / Green, Matthew D. (Committee member) / Seo, Dong K. (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2018
156957-Thumbnail Image.png
Description
Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the

Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the focus is on flows in realistic urban geometry. Both deterministic and stochastic transport patterns are identified, as inertial Lagrangian coherent structures. For the deterministic case, the organizing structures are well defined and are extracted at different hours of a day to reveal the variability of coherent patterns. For the stochastic case, a random displacement model for fluid particles is formulated, and used to derive the governing equations for inertial particles to examine the change in organizing structures due to ``zeroth-order'' random noise. It is found that, (1) the Langevin equation for inertial particles can be reduced to a random displacement model; (2) using random noise based on inhomogeneous turbulence, whose diffusivity is derived from $k$-$\epsilon$ models, major coherent structures survive to organize local flow patterns and weaker structures are smoothed out due to random motion.

A study of three-dimensional Lagrangian coherent structures (LCS) near HKIA is then presented and related to previous developments of two-dimensional (2D) LCS analyses in detecting windshear experienced by landing aircraft. The LCS are contrasted among three independent models and against 2D coherent Doppler light detection and ranging (LIDAR) data. Addition of the velocity information perpendicular to the lidar scanning cone helps solidify flow structures inferred from previous studies; contrast among models reveals the intramodel variability; and comparison with flight data evaluates the performance among models in terms of Lagrangian analyses. It is found that, while the three models and the LIDAR do recover similar features of the windshear experienced by a landing aircraft (along the landing trajectory), their Lagrangian signatures over the entire domain are quite different - a portion of each numerical model captures certain features resembling those LCS extracted from independent 2D LIDAR analyses based on observations. Overall, it was found that the Weather Research and Forecast (WRF) model provides the best agreement with the LIDAR data.

Finally, the three-dimensional variational (3DVAR) data assimilation scheme in WRF is used to incorporate the LIDAR line of sight velocity observations into the WRF model forecast at HKIA. Using two different days as test cases, it is found that the LIDAR data can be successfully and consistently assimilated into WRF. Using the updated model forecast LCS are extracted along the LIDAR scanning cone and compare to onboard flight data. It is found that the LCS generated from the updated WRF forecasts are generally better correlated with the windshear experienced by landing aircraft as compared to the LIDAR extracted LCS alone, which suggests that such a data assimilation scheme could be used for the prediction of windshear events.
ContributorsKnutson, Brent (Author) / Tang, Wenbo (Thesis advisor) / Calhoun, Ronald (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2018
157288-Thumbnail Image.png
Description
College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional

College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional study was to determine whether sleep patterns and physical activity observed in college students (N= 52) 18-25 years old at Arizona State University influenced bone biomarkers, osteocalcin (OC) and N-terminal telopeptide of type 1 collagen (NTX-1) concentrations. Students completed various dietary and health history questionnaires including the International Physical Activity Questionnaire short form. Students wore an actigraphy watch for 7 consecutive nights to record sleep events including total sleep time, sleep onset latency and wake after sleep onset. Total sleep time had a significant, negative correlation with OC (r = -0.298, p-value =0.036) while sleep onset latency had a significant, positive correlation with NTX-1 serum concentration (r = 0.293, p-value = 0.037). Despite correlational findings, only sleep percent was found to be significant (beta coefficient = 0.271 p-value = 0.788) among all the sleep components assessed, after adjusting for gender, race, BMI and calcium intake in multivariate regression models. Physical activity alone was not associated with either bone biomarker. Physical activity*sleep onset latency interactions were significantly correlated with osteocalcin (r = 0.308, p-value =0.006) and NTX-1 (r = 0.286, p-value = 0.042) serum concentrations. Sleep percent*physical activity interactions were significantly correlated with osteocalcin (r = 0.280, p-value = 0.049) but not with NTX-1 serum concentrations. Interaction effects were no longer significant after adjusting for covariates in the regression models. While sleep percent was a significant component in the regression model for NTX-1, it was not clinically significant. Overall, sleep patterns and physical activity did not explain OC and NTX-1 serum concentrations in college students 18-25 years old. Future studies may need to consider objective physical activity devices including accelerometers to measure activity levels. At this time, college students should review sleep and physical activity recommendations to ensure optimal healthy habits are practiced.
ContributorsMahmood, Tara Nabil (Author) / Whisner, Corrie (Thesis advisor) / Dickinson, Jared (Committee member) / Petrov, Megan (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019
157086-Thumbnail Image.png
Description
Background In the United States (US), first-year university students typically live on campus and purchase a meal plan. In general, meal plans allow the student a set number of meals per week or semester, or unlimited meals. Understanding how students’ use their meal plan, and barriers and facilitators to meal

Background In the United States (US), first-year university students typically live on campus and purchase a meal plan. In general, meal plans allow the student a set number of meals per week or semester, or unlimited meals. Understanding how students’ use their meal plan, and barriers and facilitators to meal plan use, may help decrease nutrition-related issues.

Methods First-year students’ meal plan and residence information was provided by a large, public, southwestern university for the 2015-2016 academic year. A subset of students (n=619) self-reported their food security status. Logistic generalized estimating equations (GEEs) were used to determine if meal plan purchase and use were associated with food insecurity. Linear GEEs were used to examine several potential reasons for lower meal plan use. Logistic and Linear GEEs were used to determine similarities in meal plan purchase and use for a total of 599 roommate pairs (n=1186 students), and 557 floormates.

Results Students did not use all of the meals available to them; 7% of students did not use their meal plan for an entire month. After controlling for socioeconomic factors, compared to students on unlimited meal plans, students on the cheapest meal plan were more likely to report food insecurity (OR=2.2, 95% CI=1.2, 4.1). In Fall, 26% of students on unlimited meal plans reported food insecurity. Students on the 180 meals/semester meal plan who used fewer meals were more likely to report food insecurity (OR=0.9, 95% CI=0.8, 1.0); after gender stratification this was only evident for males. Students’ meal plan use was lower if the student worked a job (β=-1.3, 95% CI=-2.3, -0.3) and higher when their roommate used their meal plan frequently (β=0.09, 99% CI=0.04, 0.14). Roommates on the same meal plan (OR=1.56, 99% CI=1.28, 1.89) were more likely to use their meals together.

Discussion This study suggests that determining why students are not using their meal plan may be key to minimizing the prevalence of food insecurity on college campuses, and that strategic roommate assignments may result in students’ using their meal plan more frequently. Students’ meal plan information provides objective insights into students’ university transition.
Contributorsvan Woerden, Irene (Author) / Bruening, Meg (Thesis advisor) / Hruschka, Daniel (Committee member) / Schaefer, David (Committee member) / Vega-Lopez, Sonia (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019