Matching Items (89)
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
152303-Thumbnail Image.png
Description
Purpose: To examine: (1) whether Non-Hispanic Blacks (NHB) and Non-Hispanic Whites (NHW) with diagnosed arthritis differed in self-reported physical activity (PA) levels, (2) if NHB and NHW with arthritis differed on potential correlates of PA based on the Social Ecological Model (Mcleroy et al., 1988), and (3) if PA participation

Purpose: To examine: (1) whether Non-Hispanic Blacks (NHB) and Non-Hispanic Whites (NHW) with diagnosed arthritis differed in self-reported physical activity (PA) levels, (2) if NHB and NHW with arthritis differed on potential correlates of PA based on the Social Ecological Model (Mcleroy et al., 1988), and (3) if PA participation varied by race/ethnicity after controlling for age, gender, education, and BMI. Methods: This study was a secondary data analysis of data collected from 2006-2008 in Chicago, IL as part of the Midwest Roybal Center for Health Promotion. Bivariate analyses were used to assess potential differences between race in meeting either ACR or ACSM PA guidelines. Comparisons by race between potential socio-demographic correlates and meeting physical activity guidelines were assessed using Chi-squares. Potential differences by race in psychosocial, arthritis, and health-related and environmental correlates were assessed using T-tests. Finally, logistic regression analyses were used to examine if race was still associated with PA after controlling for socio-demographic characteristics. Results: A greater proportion of NHW (68.1% and 35.3%) than NHB (46.5% and 20.9%) met both the arthritis-specific and the American College of Sports Medicine (ACSM) recommendations for physical activity, respectively. NHB had significantly lower self-efficacy for exercise and reported greater impairments in physical function compared to NHW. Likewise, NHB reported more crime and less aesthetics within their neighborhood. NHW were 2.56 times more likely to meet arthritis-specific PA guidelines than NHB after controlling for age, gender, education, marital status, and BMI. In contrast, after controlling for sociodemographic characteristics, age and gender were the only significant predictors of meeting ACSM PA guidelines. Discussion: There were significant differences between NHB and NHW individuals with arthritis in meeting PA guidelines. After controlling for age, gender, education, and BMI non-Hispanic White individuals were still significantly more likely to meet PA guidelines. Interventions aimed at promoting higher levels of physical activity among individuals with arthritis need to consider neighborhood aesthetics and crime when designing programs. More arthritis-specific programs are needed in close proximity to neighborhoods in an effort to promote physical activity.
ContributorsChuran, Christopher (Author) / Der Ananian, Cheryl (Thesis advisor) / Adams, Marc (Committee member) / Campbell, Kathryn (Committee member) / Arizona State University (Publisher)
Created2013
151797-Thumbnail Image.png
Description
The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve

The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve as a first line of defense. To date, over 1,000 AMPs of various natures have been predicted or experimentally characterized. Their potent bactericidal activities and broad-based target repertoire make them a promising next-generation pharmaceutical therapy to combat bacterial pathogens. It is important to understand the molecular mechanisms, both genetic and physiological, that bacteria employ to circumvent the bactericidal activities of AMPs. These understandings will allow researchers to overcome challenges posed with the development of new drug therapies; as well as identify, at a fundamental level, how bacteria are able to adapt and survive within varied host environments. Here, results are presented from the first reported large scale, systematic screen in which the Keio collection of ~4,000 Escherichia coli deletion mutants were challenged against physiologically significant AMPs to identify genes required for resistance. Less than 3% of the total number of genes on the E. coli chromosome was determined to contribute to bacterial resistance to at least one AMP analyzed in the screen. Further, the screen implicated a single cellular component (enterobacterial common antigen, ECA) and a single transporter system (twin-arginine transporter, Tat) as being required for resistance to each AMP class. Using antimicrobial resistance as a tool to identify novel genetic mechanisms, subsequent analyses were able to identify a two-component system, CpxR/CpxA, as a global regulator in bacterial resistance to AMPs. Multiple previously characterized CpxR/A members, as well as members found in this study, were identified in the screen. Notably, CpxR/A was found to transcriptionally regulate the gene cluster responsible for the biosynthesis of the ECA. Thus, a novel genetic mechanism was uncovered that directly correlates with a physiologically significant cellular component that appears to globally contribute to bacterial resistance to AMPs.
ContributorsWeatherspoon-Griffin, Natasha (Author) / Shi, Yixin (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Misra, Rajeev (Committee member) / Nickerson, Cheryl (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
150728-Thumbnail Image.png
Description
Public risk communication (i.e. public emergency warning) is an integral component of public emergency management. Its effectiveness is largely based on the extent to which it elicits appropriate public response to minimize losses from an emergency. While extensive studies have been conducted to investigate individual responsive process to emergency risk

Public risk communication (i.e. public emergency warning) is an integral component of public emergency management. Its effectiveness is largely based on the extent to which it elicits appropriate public response to minimize losses from an emergency. While extensive studies have been conducted to investigate individual responsive process to emergency risk information, the literature in emergency management has been largely silent on whether and how emergency impacts can be mitigated through the effective use of information transmission channels for public risk communication. This dissertation attempts to answer this question, in a specific research context of 2009 H1N1 influenza outbreak in Arizona. Methodologically, a prototype agent-based model is developed to examine the research question. Along with the specific disease spread dynamics, the model incorporates individual decision-making and response to emergency risk information. This simulation framework synthesizes knowledge from complexity theory, public emergency management, epidemiology, social network and social influence theory, and both quantitative and qualitative data found in previous studies. It allows testing how emergency risk information needs to be issued to the public to bring desirable social outcomes such as mitigated pandemic impacts. Simulation results generate several insightful propositions. First, in the research context, emergency managers can reduce the pandemic impacts by increasing the percent of state population who use national TV to receive pandemic information to 50%. Further increasing this percent after it reaches 50% brings only marginal effect in impact mitigation. Second, particular attention is needed when emergency managers attempt to increase the percent of state population who believe the importance of information from local TV or national TV, and the frequency in which national TV is used to send pandemic information. Those measures may reduce the pandemic impact in one dimension, while increase the impact in another. Third, no changes need to be made on the percent of state population who use local TV or radio to receive pandemic information, and the frequency in which either channel is used for public risk communication. This dissertation sheds light on the understanding of underlying dynamics of human decision-making during an emergency. It also contributes to the discussion of developing a better understanding of information exchange and communication dynamics during a public emergency and of improving the effectiveness of public emergency management practices in a dynamic environment.
ContributorsZhong, Wei (Author) / Lan, Zhiyong (Thesis advisor) / Kim, Yushim (Committee member) / Corley, Elizabeth (Committee member) / Lant, Timothy (Committee member) / Jehn, Megan (Committee member) / Arizona State University (Publisher)
Created2012
136284-Thumbnail Image.png
Description
Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival

Background: While research has quantified the mortality burden of the 1957 H2N2 influenza pandemic in the United States, little is known about how the virus spread locally in Arizona, an area where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.
Methods: Using archival death certificates from 1954 to 1961, this study quantified the age-specific seasonal patterns, excess-mortality rates, and transmissibility patterns of the 1957 pandemic in Maricopa County, Arizona. By applying cyclical Serfling linear regression models to weekly mortality rates, the excess-mortality rates due to respiratory and all-causes were estimated for each age group during the pandemic period. The reproduction number was quantified from weekly data using a simple growth rate method and generation intervals of 3 and 4 days. Local newspaper articles from The Arizona Republic were analyzed from 1957-1958.
Results: Excess-mortality rates varied between waves, age groups, and causes of death, but overall remained low. From October 1959-June 1960, the most severe wave of the pandemic, the absolute excess-mortality rate based on respiratory deaths per 10,000 population was 17.85 in the elderly (≥65 years). All other age groups had extremely low excess-mortality and the typical U-shaped age-pattern was absent. However, relative risk was greatest (3.61) among children and young adolescents (5-14 years) from October 1957-March 1958, based on incidence rates of respiratory deaths. Transmissibility was greatest during the same 1957-1958 period, when the mean reproduction number was 1.08-1.11, assuming 3 or 4 day generation intervals and exponential or fixed distributions.
Conclusions: Maricopa County largely avoided pandemic influenza from 1957-1961. Understanding this historical pandemic and the absence of high excess-mortality rates and transmissibility in Maricopa County may help public health officials prepare for and mitigate future outbreaks of influenza.
ContributorsCobos, April J (Author) / Jehn, Megan (Thesis director) / Chowell-Puente, Gerardo (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136287-Thumbnail Image.png
Description
Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine

Hepatitis C virus (HCV) is a globally prevalent infection which is a main contributor to the global burden of liver disease. Due to its ability to establish a chronic infection, and the lack of usefulness of traditional neutralizing antibody vaccine design in producing a protective immune response, a preventative vaccine has been notoriously difficult to produce. To overcome this, a vaccine using non-structural protein 3 (NS3) as a target to elicit a T cell specific immune response is thought to be a possible strategy for eliciting a protective immune response against hepatitis C infection. In this paper, a recombinant strain of measles virus (MV) that expresses HCV NS3 protein was analyzed. The replication fitness of this recombinant virus also indicates that this construct replicates at a higher rate than parental measles strain. It is also demonstrated through western blot analysis of protein expression and immunofluorescence that this recombinant virus expresses both the inserted HCV NS3 protein, as well as native measles proteins.
ContributorsWoell, Dana Marie (Author) / Reyes del Valle, Jorge (Thesis director) / Nickerson, Cheryl (Committee member) / Julik, Emily (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136407-Thumbnail Image.png
Description
With an excessive amount of resources in the United States healthcare system being spent on the treatment of diseases that are largely preventable through lifestyle change, the need for successful physical activity interventions is apparent. Unfortunately an individual's physical activity and health goals are often not supported by the social

With an excessive amount of resources in the United States healthcare system being spent on the treatment of diseases that are largely preventable through lifestyle change, the need for successful physical activity interventions is apparent. Unfortunately an individual's physical activity and health goals are often not supported by the social context of their daily lives. This single-case design study, Walking Intervention through Text messaging for CoHabiting individuals (WalkIT CoHab), looks at the efficacy of a text based adaptive physical activity intervention to promote walking over a three month period and the effects of social support in intervention performance in three pairs of cohabiting pairs of individuals (n=6). Mean step increase from baseline to intervention ranged from 1300 to 3000 steps per day for all individuals, an average 45.87% increase in physical activity. Goal attainment during the intervention ranged from 43.96% to 71.43%, meaning all participants exceeded the 40% success rate predicted by 60th percentile goals. Social support scores for study partners, unlike social support scores for family and friends, were often in the high social support range and had a moderate increase from pre to post visits for most participants. Although there was variation amongst participants, there was a high correlation in physical activity trends and successful goal attainment in each pair of participants. Less ambitious percentile goals and more personalized motivational text messages might be beneficial to some participants. An extended intervention, something the majority of participants expressed interest in, would further support the efficacy of this behavioral intervention and allow for possible long term benefits of social support in the intervention to be investigated.
ContributorsFernandez, Jacqueline Alyssa (Author) / Adams, Marc (Thesis director) / Angadi, Siddhartha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135647-Thumbnail Image.png
Description
Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard

Clean water for drinking, food preparation, and bathing is essential for astronaut health and safety during long duration habitation of the International Space Station (ISS), including future missions to Mars. Despite stringent water treatment and recycling efforts on the ISS, it is impossible to completely prevent microbial contamination of onboard water supplies. In this work, we used a spaceflight analogue culture system to better understand how the microgravity environment can influence the pathogenesis-related characteristics of Burkholderia cepacia complex (Bcc), an opportunistic pathogen previously recovered from the ISS water system. The results of the present study suggest that there may be important differences in how this pathogen can respond and adapt to spaceflight and other low fluid shear environments encountered during their natural life cycles. Future studies are aimed at understanding the underlying mechanisms responsible for these phenotypes.
ContributorsKang, Bianca Younseon (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136736-Thumbnail Image.png
Description
An increasingly sedentary population in the United States, specifically with adolescents, is putting youth at risk of future health related trauma and disease. This single-case design study, Walking Intervention Through Text Messaging for Adolescents (WalkIT-A), was used to intervene with a 12-year old, physically inactive male, in an attempt to

An increasingly sedentary population in the United States, specifically with adolescents, is putting youth at risk of future health related trauma and disease. This single-case design study, Walking Intervention Through Text Messaging for Adolescents (WalkIT-A), was used to intervene with a 12-year old, physically inactive male, in an attempt to test the efficacy of a 12-week physical activity program that may help reduce health risks by increasing number of steps walked per day. The components of the intervention consisted of a FitBit Zip pedometer, physical activity education, text messages, monetary incentives, and goal setting that adapted personally to the participant. Mean step count increased by 30% from baseline (mean = 3603 [sd = 1983]) to intervention (mean = 4693 [sd = 2112]); then increased slightly by 6.7% from intervention to withdrawal (mean = 5009 [sd = 2152]). Mean "very active minutes" increased by 45% from baseline (mean = 8.8 [sd = 8.9]) to intervention (mean = 12.8 [sd = 9.6]); then increased by 61.7% from intervention to withdrawal (mean = 20.7 [sd = 8.4]). Weight, BMI, and blood pressure all increased modestly from pre to post. Cardiovascular fitness (estimated VO2 max) improved by 12.5% from pre (25.5ml*kg-1*min-1) to post (28.7ml*kg-1*min-1). The intervention appeared to have a delayed and residual effect on the participant's daily steps and very active minutes. Although the idealistic ABA pattern did not occur, and the participant did not meet the target of 11,500 daily steps, a positive trend toward that target behavior in the latter 1/3rd of the intervention was observed. Results suggest the need for an extended intervention over a longer period of time and customized even further to the participant.
ContributorsLamb, Nicholas Reid (Author) / Adams, Marc (Thesis director) / Ainsworth, Barbara (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-12