Matching Items (1,052)
Filtering by

Clear all filters

141470-Thumbnail Image.png
Description

The value of “diversity” in social and ecological systems is frequently asserted in academic and policy literature. Diversity is thought to enhance the resilience of social-ecological systems to varied and potentially uncertain future conditions. Yet there are trade-offs; diversity in ecological and social domains has costs as well as benefits.

The value of “diversity” in social and ecological systems is frequently asserted in academic and policy literature. Diversity is thought to enhance the resilience of social-ecological systems to varied and potentially uncertain future conditions. Yet there are trade-offs; diversity in ecological and social domains has costs as well as benefits. In this paper, we examine social diversity, specifically its costs and benefits in terms of decision making in middle range or tribal societies, using archaeological evidence spanning seven centuries from four regions of the U.S. Southwest. In these nonstate societies, social diversity may detract from the capacity for collective action. We ask whether as population density increases, making collective action increasingly difficult, social diversity declines. Further, we trace the cases of low diversity and high population density across our long-temporal sequences to see how they associate with the most dramatic transformations. This latter analysis is inspired by the claim in resilience literature that reduction of diversity may contribute to reduction in resilience to varied conditions. Using archaeological data, we examine social diversity and conformity through the material culture (pottery styles) of past societies. Our research contributes to an enhanced understanding of how population density may limit social diversity and suggests the role that this association may play in some contexts of dramatic social transformation.

ContributorsNelson, Margaret (Author) / Hegmon, Michelle (Author) / Kulow, Stephanie (Author) / Peeples, Matthew (Author) / Kintigh, Keith (Author) / Kinzig, Ann (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011
141471-Thumbnail Image.png
Description

What relationships can be understood between resilience and vulnerability in social-ecological systems? In particular, what vulnerabilities are exacerbated or ameliorated by different sets of social practices associated with water management? These questions have been examined primarily through the study of contemporary or recent historic cases. Archaeology extends scientific observation beyond

What relationships can be understood between resilience and vulnerability in social-ecological systems? In particular, what vulnerabilities are exacerbated or ameliorated by different sets of social practices associated with water management? These questions have been examined primarily through the study of contemporary or recent historic cases. Archaeology extends scientific observation beyond all social memory and can thus illuminate interactions occurring over centuries or millennia. We examined trade-offs of resilience and vulnerability in the changing social, technological, and environmental contexts of three long-term, pre-Hispanic sequences in the U.S. Southwest: the Mimbres area in southwestern New Mexico (AD 650–1450), the Zuni area in northern New Mexico (AD 850–1540), and the Hohokam area in central Arizona (AD 700–1450). In all three arid landscapes, people relied on agricultural systems that depended on physical and social infrastructure that diverted adequate water to agricultural soils. However, investments in infrastructure varied across the cases, as did local environmental conditions. Zuni farming employed a variety of small-scale water control strategies, including centuries of reliance on small runoff agricultural systems; Mimbres fields were primarily watered by small-scale canals feeding floodplain fields; and the Hohokam area had the largest canal system in pre-Hispanic North America. The cases also vary in their historical trajectories: at Zuni, population and resource use remained comparatively stable over centuries, extending into the historic period; in the Mimbres and Hohokam areas, there were major demographic and environmental transformations. Comparisons across these cases thus allow an understanding of factors that promote vulnerability and influence resilience in specific contexts.

ContributorsNelson, Margaret (Author) / Kintigh, Keith (Author) / Abbott, David (Author) / Anderies, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2010
141472-Thumbnail Image.png
Description

The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to

The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012–2014 HSPDP coring campaign.

ContributorsCohen, A. (Author) / Campisano, Christopher (Author) / Arrowsmith, Ramon (Author) / Asrat, A. (Author) / Behrensmeyer, A. K. (Author) / Deino, A. (Author) / Feibel, C. (Author) / Hill, A. (Author) / Johnson, R. (Author) / Kingston, J. (Author) / Lamb, H. (Author) / Lowenstein, T. (Author) / Noren, A. (Author) / Olago, D. (Author) / Owen, R. B. (Author) / Potts, R. (Author) / Reed, Kaye (Author) / Renaut, R. (Author) / Schabitz, F. (Author) / Tiercelin, J.-J. (Author) / Trauth, M. H. (Author) / Wynn, J. (Author) / Ivory, S. (Author) / Brady, K. (Author) / O'Grady, R. (Author) / Rodysill, J. (Author) / Githiri, J. (Author) / Russell, J. (Author, Author) / Foerster, V. (Author) / Dommain, R. (Author) / Rucina, S. (Author) / Deocampo, D. (Author) / Billingsley, A. (Author) / Beck, C. (Author) / Dorenbeck, G. (Author) / Dullo, L. (Author) / Feary, David (Author) / Garello, Dominique (Author) / Gromig, R. (Author) / Johnson, T. (Author) / Junginger, A. (Author) / Karanja, M. (Author) / Kimburi, E. (Author) / Mbuthia, A. (Author) / McCartney, T. (Author) / McNulty, E. (Author) / Muiruri, V. (Author) / Nambiro, E. (Author) / Negash, E. W. (Author) / Njagi, D. (Author) / Wilson, J. N. (Author) / Rabideaux, N. (Author) / Raub, T. (Author) / Sier, M. J. (Author) / Smith, P. (Author) / Urban, J. (Author) / Warren, M. (Author) / Yadeta, M. (Author) / Yost, C. (Author) / Zinaye, B. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-19
141473-Thumbnail Image.png
Description

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training and the other directional dot-motion training, compared to an active control group trained on Sudoku. The three training paradigms were compared on their effectiveness for altering CFFT. Directional dot-motion and contrast sensitivity training resulted in significant improvement in CFFT, while the Sudoku group did not yield significant improvement. This finding indicates that dot-motion and contrast sensitivity training similarly transfer to effect changes in CFFT. The results, combined with prior research linking CFFT to high-order cognitive processes such as reading ability, and studies showing positive impact of both dot-motion and contrast sensitivity training in reading, provide a possible mechanistic link of how these different training approaches impact reading abilities.

ContributorsZhou, Tianyou (Author) / Nanez, Jose (Author) / Zimmerman, Daniel (Author) / Holloway, Steven (Author) / Seitz, Aaron (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-10-26
141474-Thumbnail Image.png
Description

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum.

ContributorsYahata, Noriaki (Author) / Morimoto, Jun (Author) / Hashimoto, Ryuichiro (Author) / Lisi, Giuseppe (Author) / Shibata, Kazuhisa (Author) / Kawakubo, Yuki (Author) / Kuwabara, Hitoshi (Author) / Kuroda, Miho (Author) / Yamada, Takashi (Author) / Megumi, Fukuda (Author) / Imamizu, Hiroshi (Author) / Nanez, Jose (Author) / Takahashi, Hidehiko (Author) / Okamoto, Yasumasa (Author) / Kasai, Kiyoto (Author) / Kato, Nobumasa (Author) / Sasaki, Yuka (Author) / Watanabe, Takeo (Author) / Kawato, Mitsuo (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-04-14
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
148391-Thumbnail Image.png
Description

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and gauged their risk perception. Results from our analysis indicate that the students were knowledgeable about Covid-19 and were changing their habits and engaging with preventive measures. Results further suggest that students were prepared for the pandemic in terms of resources and were exhibiting high-risk perceptions. The data also revealed that students who were being cautious and engaging with preventive behaviors had a higher risk-perception than individuals who were not. As for individuals who were prepared for the pandemic in terms of supplies, their risk perception was similar to those who did not have supplies. Individuals who were prepared and capable of providing a single caretaker to tend to their sick household members and isolate them in a separate room had a higher risk perception than those who could not. These results can help describe how college students will react to a future significant event, what resources students may be in need of, and how universities can take additional steps to keep their students safe and healthy. The results from this study and recommendations will provide for a stronger and more understanding campus community during times of distress and can improve upon already established university protocols for health crises and even natural disasters.

ContributorsNaqvi, Avina Itrat (Co-author) / Shaikh, Sara (Co-author) / Jehn, Megan (Thesis director) / Adams, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148361-Thumbnail Image.png
Description

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and

The SARS-CoV-2 (Covid-19) virus has had severe impacts on college students' ways of life. To examine how students were coping and perceiving the Covid-19 pandemic, a secondary analysis of an online survey across the three Arizona public universities investigated students’ knowledge about Covid-19, engagement with preventive strategies, pandemic preparedness and gauged their risk-perception. Results from our analysis indicate that the students were knowledgeable about Covid-19 and were changing their habits and engaging with preventive measures. Results further suggest that students were prepared for the pandemic in terms of resources and were exhibiting high-risk perceptions. The data also revealed that students who were being cautious and engaging with preventive behaviors had a higher risk-perception than individuals who were not. As for individuals who were prepared for the pandemic in terms of supplies, their risk perception was similar to those who did not have supplies. Individuals who were prepared and capable of providing a single caretaker to tend to their sick household members and isolate them in a separate room had a higher risk perception than those who could not. These results can help describe how college students will react to a future significant event, what resources students may be in need of, and how universities can take additional steps to keep their students safe and healthy. The results from this study and recommendations will provide for a stronger and more understanding campus community during times of distress and can improve upon already established university protocols for health crises and even natural disasters.

ContributorsShaikh, Sara (Co-author) / Naqvi, Avina (Co-author) / Jehn, Megan (Thesis director) / Adams, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135922-Thumbnail Image.png
Description
Prospective memory is defined as the process of remembering to do something at a particular point in the future after first forming a conscious intention. There are three types of prospective memory intentions; event-based, time-based and activity-based intentions. Research has suggested that activity-based is one of the dominant prospective memory

Prospective memory is defined as the process of remembering to do something at a particular point in the future after first forming a conscious intention. There are three types of prospective memory intentions; event-based, time-based and activity-based intentions. Research has suggested that activity-based is one of the dominant prospective memory failures that people self-report yet there is little research on this area of prospective memory. The current study focuses on how activity-based PM is influenced by the association between the match of internal context and intended action. According to previous research, similar context between intention formation and retrieval has been shown to facilitate prospective memory, which increases the execution of intentions. Based on literature, we hypothesized that there would be higher intention completion when the internal context matches the intended action to be completed in the future. Results showed that internal context affected activity-based intention completion significantly. However the interaction between internal context and the intended action did not significantly affect intention completion. Although we did not get the hypothesized interaction, the means do cross over showing the interaction pattern is there. We decided to treat this as a pilot study and replicate it with a well-powered experiment consisting of 560 valid participants.
ContributorsEdrington, Alexis Adele (Author) / Brewer, Gene (Thesis director) / Presson, Clark (Committee member) / McClure, Samuel (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2015-12
130364-Thumbnail Image.png
Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
ContributorsSun, Qian (Author) / Muckatira, Sherin (Author) / Yuan, Lei (Author) / Ji, Shuiwang (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-12-03