Matching Items (627)
Filtering by

Clear all filters

150024-Thumbnail Image.png
Description
Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are

Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline aluminosilicates like allophane, thus eliminating their identification in TIR spectral models. It is essential to accurately interpret TIR spectral data from chemically weathered surfaces to understand the evolution of aqueous processes on Mars. Laboratory experiments were performed to improve interpretations of TIR data from weathered surfaces. To test the accuracy of deriving chemistry of weathered rocks from TIR spectroscopy, chemistry was derived from TIR models of weathered basalts from Baynton, Australia and compared to actual weathering rind chemistry. To determine how specific secondary silicates affect the TIR spectroscopy of weathered basalts, mixtures of basaltic minerals and small amounts of secondary silicates were modeled. Poorly-crystalline aluminosilicates were synthesized and their TIR spectra were added to spectral libraries. Regional Thermal Emission Spectrometer (TES) data were modeled using libraries containing these poorly-crystalline aluminosilicates to test for their presence on the Mars. Chemistry derived from models of weathered Baynton basalts is not accurate, but broad chemical weathering trends can be interpreted from the data. TIR models of mineral mixtures show that small amounts of crystalline and amorphous silicate weathering products (2.5-5 wt.%) can be detected in TIR models and can adversely affect modeled plagioclase abundances. Poorly-crystalline aluminosilicates are identified in Northern Acidalia, Solis Planum, and Meridiani. Previous studies have suggested that acid sulfate weathering was the dominant surface alteration process for the past 3.5 billion years; however, the identification of allophane indicates that alteration at near-neutral pH occurred on regional scales and that acid sulfate weathering is not the only weathering process on Mars.
ContributorsRampe, Elizabeth Barger (Author) / Sharp, Thomas G (Thesis advisor) / Christensen, Phillip (Committee member) / Hervig, Richard (Committee member) / Shock, Everett (Committee member) / Williams, Lynda (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150048-Thumbnail Image.png
Description
A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene,

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness are also demonstrated in some field tests. It provides rapid and reliable detection of BTEX in real samples, including challenging high concentrations of interferents, and it is suitable for occupational, environmental health and epidemiological applications.
ContributorsChen, Zheng (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
ContributorsMorgan, Jennifer Lynn Louden (Author) / Anbar, Ariel D. (Thesis advisor) / Wasylenki, Laura E. (Committee member) / Jones, Anne K. (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2011
149647-Thumbnail Image.png
Description
This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single

This thesis describes several approaches to next generation DNA sequencing via tunneling current method based on a Scanning Tunneling Microscope system. In chapters 5 and 6, preliminary results have shown that DNA bases could be identified by their characteristic tunneling signals. Measurements taken in aqueous buffered solution showed that single base resolution could be achieved with economic setups. In chapter 7, it is illustrated that some ongoing measurements are indicating the sequence readout by making linear scan on a piece of short DNA oligomer. However, to overcome the difficulties of controlling DNA especially ssDNA movement, it is much better to have the tunneling measurement incorporated onto a robust nanopore device to realize sequential reading of the DNA sequence while it is being translocated.
ContributorsHuang, Shuo (Author) / Lindsay, Stuart (Thesis advisor) / Sankey, Otto (Committee member) / Tao, Nongjian (Committee member) / Drucker, Jeff (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150364-Thumbnail Image.png
Description
Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser

Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the longer-wavelength active region is a critical element in realizing dual-wavelength laser output. The modeling predicts lower laser thresholds for the second and third generation designs; however, the experimental results of the second and third generation devices confirm challenges related to the epitaxial growth of the structures in eventually demonstrating dual-wavelength laser output.
ContributorsGreen, Benjamin C (Author) / Zhang, Yong-Hang (Thesis advisor) / Ning, Cun-Zheng (Committee member) / Tao, Nongjian (Committee member) / Roedel, Ronald J (Committee member) / Arizona State University (Publisher)
Created2011
148131-Thumbnail Image.png
Description

This case study describes an adult patient whose brachial plexus injury was treated with various modalities and exercise. The participant of this study was a 76 year old female who sustained a brachial plexus injury during an elective reverse total shoulder arthroplasty. The initial evaluation reported only passive range of

This case study describes an adult patient whose brachial plexus injury was treated with various modalities and exercise. The participant of this study was a 76 year old female who sustained a brachial plexus injury during an elective reverse total shoulder arthroplasty. The initial evaluation reported only passive range of motion with 90 degrees shoulder flexion, 85 degrees abduction, and 30 degrees external rotation. Muscle testing yielded significantly limited wrist and digit extension strength. Testing of sensation found diminished protective sensation along the median nerve distribution, including the thumb, index finger, and middle finger. Occupational therapy was initiated for postoperative treatment of the shoulder as well as treatment of the brachial plexus palsy. Therapy consisted of static splinting for healing structures and sensory reeducation through massage, finding objects with the eyes occluded, and fluidotherapy. Additionally, various exercises and modalities for improving motion and strength were initiated, including proprioceptive neuromuscular reeducation, passive/active assist/active exercises, dynamic splinting, muscle stimulation, kinesio tape, functional activities, and tendon glides. After five months, active range of motion in the shoulder, elbow, and wrist was finally achieved and median nerve sensation had improved. After nine months, elbow motion was within normal limits and wrist motion had significantly improved. Upon muscle testing, the elbow, forearm, wrist, and hand had made significant gains in strength. However, shoulder strength and motion was still limited. Overall, treatment made a significant improvement in the patient’s functionality.

ContributorsMorlock, Callista (Author) / Ramos, Christopher (Thesis director) / Thomas, Karen (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148135-Thumbnail Image.png
Description

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix

Within the pediatric hospitalization experience, fear and anxiety are two emotions commonly felt by children of all ages. Hospitalized children can greatly benefit from interventions designed to help them cope with these emotions throughout their medical experiences. This study draws on each of our clinical experiences as volunteers at Phoenix Children’s Hospital, and uses a qualitative analysis of three semi-structured interviews with currently employed Child Life Specialists to understand and analyze the use of medical play, a form of play intervention with a medical theme or medical equipment. We explore the goals and benefits of medical play for hospitalized pediatric patients, the process of using medical play as an intervention, including the activity design process, the assessments and adjustments made throughout the child’s hospitalization, and the considerations and limitations to implementing medical play activities. Ultimately, we found that the element of fun that defines play can be channeled into medical play activities implemented by skilled Child Life Specialists, who are experts in their field, in clinical settings to promote several different and beneficial goals, including pediatric patient coping.

ContributorsGarciapena, Danae (Co-author) / Aguiar, Lara (Co-author) / Loebenberg, Abby (Thesis director) / Swanson, Jodi (Committee member) / College of Health Solutions (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147855-Thumbnail Image.png
Description

Background: The purpose of this study was to assess the efficacy of a lifestyle intervention on cardiorespiratory fitness in Latino youth with obesity and prediabetes. <br/>Methods: Participants (n=50) in this study were taken from a larger randomized controlled trial (n=180, BMI ≥ 95th percentile). Youth participated in a 6-month lifestyle

Background: The purpose of this study was to assess the efficacy of a lifestyle intervention on cardiorespiratory fitness in Latino youth with obesity and prediabetes. <br/>Methods: Participants (n=50) in this study were taken from a larger randomized controlled trial (n=180, BMI ≥ 95th percentile). Youth participated in a 6-month lifestyle intervention that included physical activity (60 minutes, 3x/week) and nutrition and wellness classes (60 minutes, 1x/week) delivered to families at the Lincoln Family YMCA in Downtown Phoenix. The primary outcome was cardiorespiratory fitness measured at baseline and post-intervention.<br/>Results: The mean BMI for the sample was 33.17 ± 4.54 kg/m2, which put the participants in the 98.4th percentile. At baseline, the mean VO2max was 2737.02 ± 488.89 mL/min. The mean relative VO2max was 30.65 ± 3.87 mL/kg/min. VO2max values significantly increased from baseline to post-intervention (2737.022 ± 483.977 mL/min vs 2932.654 ± 96.062 mL/min, p<0.001). <br/>Conclusion: Culturally-grounded, family-focused lifestyle interventions are a promising approach for improving cardiorespiratory fitness in high-risk youth at risk for diabetes.

ContributorsEstrada, Lourdes Alexa (Author) / Shaibi, Gabriel (Thesis director) / Peña, Armando (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148163-Thumbnail Image.png
Description

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which

The following paper explores the various effects of stress on the endocrine system. Many understand that being stressed can jeopardize maintaining adequate health, but what specifically happens when humans are stressed? Why does stress affect human health? This paper delves into background information, previous research, and the depths to which stress negatively affects the body. The effects stress has on the endocrine system, specifically on the hypothalamic-pituitary-thyroid axis (HPT) and hypothalamic-pituitary-adrenal axis (HPA), is discussed, and additionally, at home de-stressing methods are researched. The study included a set of participants at Arizona State University. The method took place over the course of 2 weeks: one normal week, and the other with the implementation of a de-stressing method. The normal week involved the participants living their daily lives with the addition of a stress-measuring survey, while the second week involved implementing a de-stressing method and stress-measuring survey. The purpose of this study was to discover if there was a correlation between performing these relaxation activities and decreasing stress levels in ASU students. The results found that students reported they felt more relaxed and calm after the activities. Overall, this thesis provides information and first hand research on the effects of stress and stress-reducing activities and discusses the importance of maintaining lower stress levels throughout everyday life.

ContributorsWeissmann, Megan Diane (Co-author) / Gebara, Nayla (Co-author) / Don, Rachael (Thesis director) / Irving, Andrea (Committee member) / Kizer, Elizabeth (Committee member) / College of Health Solutions (Contributor) / Edson College of Nursing and Health Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05