Matching Items (117)
153810-Thumbnail Image.png
Description
Salad bars are promoted as a means to increase fruit and vegetable consumption among school-age children; however, no study has assessed barriers to having salad bars. Further, it is not known if barriers differ across school level. This cross-sectional study investigated the barriers to having salad bars across school level

Salad bars are promoted as a means to increase fruit and vegetable consumption among school-age children; however, no study has assessed barriers to having salad bars. Further, it is not known if barriers differ across school level. This cross-sectional study investigated the barriers to having salad bars across school level among schools without salad bars in Arizona (n=177). Multivariate binominal regression models were used to determine differences between the barriers and school level, adjusting for years at current job, enrollment of school, free-reduced eligibility rate and district level clustering. The top five barriers were not enough staff (51.4%), lack of space for salad bars (49.7%), food waste concerns (37.9%), sanitation/food safety concerns (31.3%), and time to get through the lines (28.3%) Adjusted analyses indicated two significant differences between barriers across school level: time to get through lines (p=0.040) and outside caterer/vendor (p=0.018) with time to get through lines reported more often by elementary and middle school nutrition managers and outside caterer/vendor reported most often by high school nutrition managers. There were several key barriers reported and results indicate that having an outside vendor/caterer for their meal programs and time to get through the service lines varied across school level. High schools report a higher percent of the barrier outside caterer/vendors and elementary and middle schools report a higher percent of the barrier time to get through the lines. Results indicate that research determining the approximate time it takes students to get through salad bar lines will need to be considered. More research is needed to determine if the barrier time to get through the service lines is due to selection of food items or if it is due to the enrollment size of the lunch period. Future research interventions may consider investigating food safety and sanitation concerns of middle school nutrition managers. Findings may be used to guide ways to decrease barriers in schools without salad bars.
ContributorsKebric, Kelsey (Author) / Bruening, Meg (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2016
154070-Thumbnail Image.png
Description
No two cancers are alike. Cancer is a dynamic and heterogeneous disease, such heterogeneity arise among patients with the same cancer type, among cancer cells within the same individual’s tumor and even among cells within the same sub-clone over time. The recent application of next-generation sequencing and precision medicine techniques

No two cancers are alike. Cancer is a dynamic and heterogeneous disease, such heterogeneity arise among patients with the same cancer type, among cancer cells within the same individual’s tumor and even among cells within the same sub-clone over time. The recent application of next-generation sequencing and precision medicine techniques is the driving force to uncover the complexity of cancer and the best clinical practice. The core concept of precision medicine is to move away from crowd-based, best-for-most treatment and take individual variability into account when optimizing the prevention and treatment strategies. Next-generation sequencing is the method to sift through the entire 3 billion letters of each patient’s DNA genetic code in a massively parallel fashion.

The deluge of next-generation sequencing data nowadays has shifted the bottleneck of cancer research from multiple “-omics” data collection to integrative analysis and data interpretation. In this dissertation, I attempt to address two distinct, but dependent, challenges. The first is to design specific computational algorithms and tools that can process and extract useful information from the raw data in an efficient, robust, and reproducible manner. The second challenge is to develop high-level computational methods and data frameworks for integrating and interpreting these data. Specifically, Chapter 2 presents a tool called Snipea (SNv Integration, Prioritization, Ensemble, and Annotation) to further identify, prioritize and annotate somatic SNVs (Single Nucleotide Variant) called from multiple variant callers. Chapter 3 describes a novel alignment-based algorithm to accurately and losslessly classify sequencing reads from xenograft models. Chapter 4 describes a direct and biologically motivated framework and associated methods for identification of putative aberrations causing survival difference in GBM patients by integrating whole-genome sequencing, exome sequencing, RNA-Sequencing, methylation array and clinical data. Lastly, chapter 5 explores longitudinal and intratumor heterogeneity studies to reveal the temporal and spatial context of tumor evolution. The long-term goal is to help patients with cancer, particularly those who are in front of us today. Genome-based analysis of the patient tumor can identify genomic alterations unique to each patient’s tumor that are candidate therapeutic targets to decrease therapy resistance and improve clinical outcome.
ContributorsPeng, Sen (Author) / Dinu, Valentin (Thesis advisor) / Scotch, Matthew (Committee member) / Wallstrom, Garrick (Committee member) / Arizona State University (Publisher)
Created2015
152847-Thumbnail Image.png
Description
The processes of a human somatic cell are very complex with various genetic mechanisms governing its fate. Such cells undergo various genetic mutations, which translate to the genetic aberrations that we see in cancer. There are more than 100 types of cancer, each having many more subtypes with aberrations being

The processes of a human somatic cell are very complex with various genetic mechanisms governing its fate. Such cells undergo various genetic mutations, which translate to the genetic aberrations that we see in cancer. There are more than 100 types of cancer, each having many more subtypes with aberrations being unique to each. In the past two decades, the widespread application of high-throughput genomic technologies, such as micro-arrays and next-generation sequencing, has led to the revelation of many such aberrations. Known types and subtypes can be readily identified using gene-expression profiling and more importantly, high-throughput genomic datasets have helped identify novel sub-types with distinct signatures. Recent studies showing usage of gene-expression profiling in clinical decision making in breast cancer patients underscore the utility of high-throughput datasets. Beyond prognosis, understanding the underlying cellular processes is essential for effective cancer treatment. Various high-throughput techniques are now available to look at a particular aspect of a genetic mechanism in cancer tissue. To look at these mechanisms individually is akin to looking at a broken watch; taking apart each of its parts, looking at them individually and finally making a list of all the faulty ones. Integrative approaches are needed to transform one-dimensional cancer signatures into multi-dimensional interaction and regulatory networks, consequently bettering our understanding of cellular processes in cancer. Here, I attempt to (i) address ways to effectively identify high quality variants when multiple assays on the same sample samples are available through two novel tools, snpSniffer and NGSPE; (ii) glean new biological insight into multiple myeloma through two novel integrative analysis approaches making use of disparate high-throughput datasets. While these methods focus on multiple myeloma datasets, the informatics approaches are applicable to all cancer datasets and will thus help advance cancer genomics.
ContributorsYellapantula, Venkata (Author) / Dinu, Valentin (Thesis advisor) / Scotch, Matthew (Committee member) / Wallstrom, Garrick (Committee member) / Keats, Jonathan (Committee member) / Arizona State University (Publisher)
Created2014
152496-Thumbnail Image.png
Description
Background: Childhood obesity is one of the most serious public health concerns in the United States and has been associated with low levels of physical activity. Schools are ideal physical activity promotion sites but school physical activity opportunities have decreased due the increased focus on academic performance. Before-school programs provide

Background: Childhood obesity is one of the most serious public health concerns in the United States and has been associated with low levels of physical activity. Schools are ideal physical activity promotion sites but school physical activity opportunities have decreased due the increased focus on academic performance. Before-school programs provide a good opportunity for children to engage in physical activity as well as improve their readiness to learn. Purpose: The purpose of this study was to examine the effect of a before-school running/walking club on children's physical activity and on-task behavior. Methods: Participants were third and fourth grade children from two schools in the Southwestern United States who participated in a before-school running/walking club that met two times each week. The study employed a two-phase experimental design with an initial baseline phase and an alternating treatments phase. Physical activity was monitored using pedometers and on-task behavior was assessed through systematic observation. Data analysis included visual analysis, descriptive statistics, as well as multilevel modeling. Results: Children accumulated substantial amounts of physical activity within the before-school program (School A: 1731 steps, 10:02 MVPA minutes; School B: 1502 steps, 8:30 MVPA minutes) and, on average, did not compensate by decreasing their physical activity during the rest of the school day. Further, on-task behavior was significantly higher on days the children attended the before-school program than on days they did not (School A=15.78%, pseudo-R2=.34 [strong effect]; School B=14.26%, pseudo-R2=.22 [moderate effect]). Discussion: Results provide evidence for the positive impact of before-school programs on children's physical activity and on-task behavior. Such programs do not take time away from academics and may be an attractive option for schools.
ContributorsStylianou, Michalis (Author) / Kulinna, Pamela H. (Thesis advisor) / Van Der Mars, Hans (Committee member) / Amazeen, Eric (Committee member) / Adams, Marc (Committee member) / Mahar, Matthew T. (Committee member) / Arizona State University (Publisher)
Created2014
152558-Thumbnail Image.png
Description
Sustaining a fall can be hazardous for those with low bone mass. Interventions exist to reduce fall-risk, but may not retain long-term interest. "Exergaming" has become popular in older adults as a therapy, but no research has been done on its preventative ability in non-clinical populations. The purpose was to

Sustaining a fall can be hazardous for those with low bone mass. Interventions exist to reduce fall-risk, but may not retain long-term interest. "Exergaming" has become popular in older adults as a therapy, but no research has been done on its preventative ability in non-clinical populations. The purpose was to determine the impact of 12-weeks of interactive play with the Wii Fit® on balance, muscular fitness, and bone health in peri- menopausal women. METHODS: 24 peri-menopausal-women were randomized into study groups. Balance was assessed using the Berg/FICSIT-4 and a force plate. Muscular strength was measured using the isokinetic dynamometer at 60°/180°/240°/sec and endurance was assessed using 50 repetitions at 240°/sec. Bone health was tracked using dual-energy x-ray absorptiometry (DXA) for the hip/lumbar spine and qualitative ultrasound (QUS) of the heel. Serum osteocalcin was assessed by enzyme immunoassay. Physical activity was quantified using the Women's Health Initiative Physical Activity Questionnaire and dietary patterns were measured using the Nurses' Health Food Frequency Questionnaire. All measures were repeated at weeks 6 and 12, except for the DXA, which was completed pre-post. RESULTS: There were no significant differences in diet and PA between groups. Wii Fit® training did not improve scores on the Berg/FICSIT-4, but improved center of pressure on the force plate for Tandem Step, Eyes Closed (p-values: 0.001-0.051). There were no significant improvements for muscular fitness at any of the angular velocities. DXA BMD of the left femoral neck improved in the intervention group (+1.15%) and decreased in the control (-1.13%), but no other sites had significant changes. Osteocalcin indicated no differences in bone turnover between groups at baseline, but the intervention group showed increased bone turnover between weeks 6 and 12. CONCLUSIONS: Findings indicate that WiiFit® training may improve balance by preserving center of pressure. QUS, DXA and osteocalcin data confirm that those in the intervention group were experiencing more bone turnover and bone formation than the control group. In summary, twelve weeks of strength /balance training with the Wii Fit® shows promise as a preventative intervention to reduce fall and fracture risk in non-clinical middle aged women who are at risk.
ContributorsWherry, Sarah Jo (Author) / Swan, Pamela D (Thesis advisor) / Adams, Marc (Committee member) / Der Ananian, Cheryl (Committee member) / Sweazea, Karen (Committee member) / Vaughan, Linda (Committee member) / Arizona State University (Publisher)
Created2014
152740-Thumbnail Image.png
Description
Genomic structural variation (SV) is defined as gross alterations in the genome broadly classified as insertions/duplications, deletions inversions and translocations. DNA sequencing ushered structural variant discovery beyond laboratory detection techniques to high resolution informatics approaches. Bioinformatics tools for computational discovery of SVs however are still missing variants in the complex

Genomic structural variation (SV) is defined as gross alterations in the genome broadly classified as insertions/duplications, deletions inversions and translocations. DNA sequencing ushered structural variant discovery beyond laboratory detection techniques to high resolution informatics approaches. Bioinformatics tools for computational discovery of SVs however are still missing variants in the complex cancer genome. This study aimed to define genomic context leading to tool failure and design novel algorithm addressing this context. Methods: The study tested the widely held but unproven hypothesis that tools fail to detect variants which lie in repeat regions. Publicly available 1000-Genomes dataset with experimentally validated variants was tested with SVDetect-tool for presence of true positives (TP) SVs versus false negative (FN) SVs, expecting that FNs would be overrepresented in repeat regions. Further, the novel algorithm designed to informatically capture the biological etiology of translocations (non-allelic homologous recombination and 3&ndashD; placement of chromosomes in cells –context) was tested using simulated dataset. Translocations were created in known translocation hotspots and the novel&ndashalgorithm; tool compared with SVDetect and BreakDancer. Results: 53% of false negative (FN) deletions were within repeat structure compared to 81% true positive (TP) deletions. Similarly, 33% FN insertions versus 42% TP, 26% FN duplication versus 57% TP and 54% FN novel sequences versus 62% TP were within repeats. Repeat structure was not driving the tool's inability to detect variants and could not be used as context. The novel algorithm with a redefined context, when tested against SVDetect and BreakDancer was able to detect 10/10 simulated translocations with 30X coverage dataset and 100% allele frequency, while SVDetect captured 4/10 and BreakDancer detected 6/10. For 15X coverage dataset with 100% allele frequency, novel algorithm was able to detect all ten translocations albeit with fewer reads supporting the same. BreakDancer detected 4/10 and SVDetect detected 2/10 Conclusion: This study showed that presence of repetitive elements in general within a structural variant did not influence the tool's ability to capture it. This context-based algorithm proved better than current tools even with half the genome coverage than accepted protocol and provides an important first step for novel translocation discovery in cancer genome.
ContributorsShetty, Sheetal (Author) / Dinu, Valentin (Thesis advisor) / Bussey, Kimberly (Committee member) / Scotch, Matthew (Committee member) / Wallstrom, Garrick (Committee member) / Arizona State University (Publisher)
Created2014
153687-Thumbnail Image.png
Description
Research indicates that adults are not acquiring enough physical activity. Increasing the use of stairs is an accessible way to weave high intensity physical activity into the daily routine. The purpose of this study is to test the effect of four environmental changes on ascending stair use in a mixed

Research indicates that adults are not acquiring enough physical activity. Increasing the use of stairs is an accessible way to weave high intensity physical activity into the daily routine. The purpose of this study is to test the effect of four environmental changes on ascending stair use in a mixed population of college students, faulty, and staff on a southwest college campus. The study design included a 10-week time series design with alternating baseline and intervention phases, including a directional cue represented by footprints on the ground, a positive prompt, a deterrent prompt and a combination phase. Data was collected with both an in-person tally and a video recording device. The study included 6,140 observations and coded variables included stair use, sex, number of bags carried, temperature, and volume. Rater reliability ranged from .81 to 1.0. Multivariate logistic regression was used to perform the statistic analysis. Stair use increased significantly from Washout 1 and the positive prompting phase with a 7% absolute increase and an odds ratio of 1.35 (95% CI 1.080-1.696). Stair use during the footprint phase, deterrent phase and combination phase did not increase significantly compared to the previous baseline or washout phases. Day of the week (Monday=reference, Tuesday CI=1.626, 95% CI 1.298-2.011, Wednesday OR=0.457, 95% CI 0.248-0.841, Thursday OR=1.434, 95% CI 1.164-1.766), sex (OR=1.376, 95% CI 1.173-1.613) and volume (OR=1.007, 95% CI 1.005-1.008) were significantly correlated to stair use. Women used the stairs more than men and higher volume situations were related to increased stair use. Temperature and baggage number were not related to stair use. The results of this study indicate that positive prompting with an environmental message theme is an effective method to increase stair use in a university setting.
ContributorsFord, Marley (Author) / Adams, Marc (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Vaughan, Linda (Committee member) / Arizona State University (Publisher)
Created2015
Description
Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while

Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while other are nested between the myofibrils (i.e., intermyofibrillar (IMF) mitochondria). Functional and proteome differences specific to SS versus IMF mitochondria in obese individuals may contribute to reduced capacity for muscle ATP production seen in obesity. The overall goals of this work were to (1) isolate functional muscle SS and IMF mitochondria from lean and obese individuals, (2) assess enzyme activities associated with the electron transport chain and ATP production, (3) determine if elevated plasma amino acids enhance SS and IMF mitochondrial respiration and ATP production rates in SM of obese humans, and (4) determine differences in mitochondrial proteome regulating energy metabolism and key biological processes associated with SS and IMF mitochondria between lean and obese humans.

Polarography was used to determine functional differences in isolated SS and IMF mitochondria between lean (37 ± 3 yrs; n = 10) and obese (35 ± 3 yrs; n = 11) subjects during either saline (control) or amino acid (AA) infusions. AA infusion increased ADP-stimulated respiration (i.e., coupled respiration), non-ADP stimulated respiration (i.e., uncoupled respiration), and ATP production rates in SS, but not IMF mitochondria in lean (n = 10; P < 0.05). Neither infusion increased any of the above parameters in muscle SS or IMF mitochondria of the obese subjects.

Using label free quantitative mass spectrometry, we determined differences in proteomes of SM SS and IMF mitochondria between lean (33 ± 3 yrs; n = 16) and obese (32 ± 3 yrs; n = 17) subjects. Differentially-expressed mitochondrial proteins in SS versus IMF mitochondria of obese subjects were associated with biological processes that regulate: electron transport chain (P<0.0001), citric acid cycle (P<0.0001), oxidative phosphorylation (P<0.001), branched-chain amino acid degradation, (P<0.0001), and fatty acid degradation (P<0.001). Overall, these findings show that obesity is associated with redistribution of key biological processes within the mitochondrial reticulum responsible for regulating energy metabolism in human skeletal muscle.
ContributorsKras, Katon Anthony (Author) / Katsanos, Christos (Thesis advisor) / Chandler, Douglas (Committee member) / Dinu, Valentin (Committee member) / Mor, Tsafrir S. (Committee member) / Arizona State University (Publisher)
Created2017
155725-Thumbnail Image.png
Description
Random forest (RF) is a popular and powerful technique nowadays. It can be used for classification, regression and unsupervised clustering. In its original form introduced by Leo Breiman, RF is used as a predictive model to generate predictions for new observations. Recent researches have proposed several methods based on RF

Random forest (RF) is a popular and powerful technique nowadays. It can be used for classification, regression and unsupervised clustering. In its original form introduced by Leo Breiman, RF is used as a predictive model to generate predictions for new observations. Recent researches have proposed several methods based on RF for feature selection and for generating prediction intervals. However, they are limited in their applicability and accuracy. In this dissertation, RF is applied to build a predictive model for a complex dataset, and used as the basis for two novel methods for biomarker discovery and generating prediction interval.

Firstly, a biodosimetry is developed using RF to determine absorbed radiation dose from gene expression measured from blood samples of potentially exposed individuals. To improve the prediction accuracy of the biodosimetry, day-specific models were built to deal with day interaction effect and a technique of nested modeling was proposed. The nested models can fit this complex data of large variability and non-linear relationships.

Secondly, a panel of biomarkers was selected using a data-driven feature selection method as well as handpick, considering prior knowledge and other constraints. To incorporate domain knowledge, a method called Know-GRRF was developed based on guided regularized RF. This method can incorporate domain knowledge as a penalized term to regulate selection of candidate features in RF. It adds more flexibility to data-driven feature selection and can improve the interpretability of models. Know-GRRF showed significant improvement in cross-species prediction when cross-species correlation was used to guide selection of biomarkers. The method can also compete with existing methods using intrinsic data characteristics as alternative of domain knowledge in simulated datasets.

Lastly, a novel non-parametric method, RFerr, was developed to generate prediction interval using RF regression. This method is widely applicable to any predictive models and was shown to have better coverage and precision than existing methods on the real-world radiation dataset, as well as benchmark and simulated datasets.
ContributorsGuan, Xin (Author) / Liu, Li (Thesis advisor) / Runger, George C. (Thesis advisor) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2017
Description
Obesity and its underlying insulin resistance are caused by environmental and genetic factors. DNA methylation provides a mechanism by which environmental factors can regulate transcriptional activity. The overall goal of the work herein was to (1) identify alterations in DNA methylation in human skeletal muscle with obesity and its underlying

Obesity and its underlying insulin resistance are caused by environmental and genetic factors. DNA methylation provides a mechanism by which environmental factors can regulate transcriptional activity. The overall goal of the work herein was to (1) identify alterations in DNA methylation in human skeletal muscle with obesity and its underlying insulin resistance, (2) to determine if these changes in methylation can be altered through weight-loss induced by bariatric surgery, and (3) to identify DNA methylation biomarkers in whole blood that can be used as a surrogate for skeletal muscle.

Assessment of DNA methylation was performed on human skeletal muscle and blood using reduced representation bisulfite sequencing (RRBS) for high-throughput identification and pyrosequencing for site-specific confirmation. Sorbin and SH3 homology domain 3 (SORBS3) was identified in skeletal muscle to be increased in methylation (+5.0 to +24.4 %) in the promoter and 5’untranslated region (UTR) in the obese participants (n= 10) compared to lean (n=12), and this finding corresponded with a decrease in gene expression (fold change: -1.9, P=0.0001). Furthermore, SORBS3 was demonstrated in a separate cohort of morbidly obese participants (n=7) undergoing weight-loss induced by surgery, to decrease in methylation (-5.6 to -24.2%) and increase in gene expression (fold change: +1.7; P=0.05) post-surgery. Moreover, SORBS3 promoter methylation was demonstrated in vitro to inhibit transcriptional activity (P=0.000003). The methylation and transcriptional changes for SORBS3 were significantly (P≤0.05) correlated with obesity measures and fasting insulin levels. SORBS3 was not identified in the blood methylation analysis of lean (n=10) and obese (n=10) participants suggesting that it is a muscle specific marker. However, solute carrier family 19 member 1 (SLC19A1) was identified in blood and skeletal muscle to have decreased 5’UTR methylation in obese participants, and this was significantly (P≤0.05) predicted by insulin sensitivity.

These findings suggest SLC19A1 as a potential blood-based biomarker for obese, insulin resistant states. The collective findings of SORBS3 DNA methylation and gene expression present an exciting novel target in skeletal muscle for further understanding obesity and its underlying insulin resistance. Moreover, the dynamic changes to SORBS3 in response to metabolic improvements and weight-loss induced by surgery.
ContributorsDay, Samantha Elaine (Author) / Coletta, Dawn K. (Thesis advisor) / Katsanos, Christos (Committee member) / Mandarino, Lawrence J. (Committee member) / Shaibi, Gabriel Q. (Committee member) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2017