Matching Items (107)
Filtering by

Clear all filters

157288-Thumbnail Image.png
Description
College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional

College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional study was to determine whether sleep patterns and physical activity observed in college students (N= 52) 18-25 years old at Arizona State University influenced bone biomarkers, osteocalcin (OC) and N-terminal telopeptide of type 1 collagen (NTX-1) concentrations. Students completed various dietary and health history questionnaires including the International Physical Activity Questionnaire short form. Students wore an actigraphy watch for 7 consecutive nights to record sleep events including total sleep time, sleep onset latency and wake after sleep onset. Total sleep time had a significant, negative correlation with OC (r = -0.298, p-value =0.036) while sleep onset latency had a significant, positive correlation with NTX-1 serum concentration (r = 0.293, p-value = 0.037). Despite correlational findings, only sleep percent was found to be significant (beta coefficient = 0.271 p-value = 0.788) among all the sleep components assessed, after adjusting for gender, race, BMI and calcium intake in multivariate regression models. Physical activity alone was not associated with either bone biomarker. Physical activity*sleep onset latency interactions were significantly correlated with osteocalcin (r = 0.308, p-value =0.006) and NTX-1 (r = 0.286, p-value = 0.042) serum concentrations. Sleep percent*physical activity interactions were significantly correlated with osteocalcin (r = 0.280, p-value = 0.049) but not with NTX-1 serum concentrations. Interaction effects were no longer significant after adjusting for covariates in the regression models. While sleep percent was a significant component in the regression model for NTX-1, it was not clinically significant. Overall, sleep patterns and physical activity did not explain OC and NTX-1 serum concentrations in college students 18-25 years old. Future studies may need to consider objective physical activity devices including accelerometers to measure activity levels. At this time, college students should review sleep and physical activity recommendations to ensure optimal healthy habits are practiced.
ContributorsMahmood, Tara Nabil (Author) / Whisner, Corrie (Thesis advisor) / Dickinson, Jared (Committee member) / Petrov, Megan (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019
157086-Thumbnail Image.png
Description
Background In the United States (US), first-year university students typically live on campus and purchase a meal plan. In general, meal plans allow the student a set number of meals per week or semester, or unlimited meals. Understanding how students’ use their meal plan, and barriers and facilitators to meal

Background In the United States (US), first-year university students typically live on campus and purchase a meal plan. In general, meal plans allow the student a set number of meals per week or semester, or unlimited meals. Understanding how students’ use their meal plan, and barriers and facilitators to meal plan use, may help decrease nutrition-related issues.

Methods First-year students’ meal plan and residence information was provided by a large, public, southwestern university for the 2015-2016 academic year. A subset of students (n=619) self-reported their food security status. Logistic generalized estimating equations (GEEs) were used to determine if meal plan purchase and use were associated with food insecurity. Linear GEEs were used to examine several potential reasons for lower meal plan use. Logistic and Linear GEEs were used to determine similarities in meal plan purchase and use for a total of 599 roommate pairs (n=1186 students), and 557 floormates.

Results Students did not use all of the meals available to them; 7% of students did not use their meal plan for an entire month. After controlling for socioeconomic factors, compared to students on unlimited meal plans, students on the cheapest meal plan were more likely to report food insecurity (OR=2.2, 95% CI=1.2, 4.1). In Fall, 26% of students on unlimited meal plans reported food insecurity. Students on the 180 meals/semester meal plan who used fewer meals were more likely to report food insecurity (OR=0.9, 95% CI=0.8, 1.0); after gender stratification this was only evident for males. Students’ meal plan use was lower if the student worked a job (β=-1.3, 95% CI=-2.3, -0.3) and higher when their roommate used their meal plan frequently (β=0.09, 99% CI=0.04, 0.14). Roommates on the same meal plan (OR=1.56, 99% CI=1.28, 1.89) were more likely to use their meals together.

Discussion This study suggests that determining why students are not using their meal plan may be key to minimizing the prevalence of food insecurity on college campuses, and that strategic roommate assignments may result in students’ using their meal plan more frequently. Students’ meal plan information provides objective insights into students’ university transition.
Contributorsvan Woerden, Irene (Author) / Bruening, Meg (Thesis advisor) / Hruschka, Daniel (Committee member) / Schaefer, David (Committee member) / Vega-Lopez, Sonia (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019
154651-Thumbnail Image.png
Description
Euendolithic cyanobacteria have the remarkable ability to actively excavate and grow within certain minerals. Their activity leads to increased erosion of marine and terrestrial carbonates, negatively affecting coral reef and bivalve ecology. Despite their environmental relevance, the boring mechanism has remained elusive and paradoxical, in that cyanobacteria alkalinize their surroundings,

Euendolithic cyanobacteria have the remarkable ability to actively excavate and grow within certain minerals. Their activity leads to increased erosion of marine and terrestrial carbonates, negatively affecting coral reef and bivalve ecology. Despite their environmental relevance, the boring mechanism has remained elusive and paradoxical, in that cyanobacteria alkalinize their surroundings, typically leading to carbonate precipitation, not dissolution. Thus, euendoliths must rely on unique adaptations to bore. Recent work using the filamentous model euendolith Mastigocoleus testarum strain BC008 indicated that excavation relied on transcellular calcium transport mediated by P-type ATPases, but the phenomenon remained unclear. Here I present evidence that excavation in M. testarum involves an unprecedented set of adaptations. Long-range calcium transport is achieved through the coordinated pumping of multiple cells, orchestrated by the localization of calcium ATPases in a repeating annular pattern, positioned at a single cell pole, adjacent to each cell septum along the filament. Additionally, specialized chlorotic cells that I named calcicytes, differentiate and accumulate calcium at concentrations more than 500 fold those of canonical cells, likely allowing for fast calcium flow at non-toxic concentrations through undifferentiated cells. I also show, using 13C stable isotope tracers and NanoSIMS imaging, that endolithic M. testarum derives most of its carbon from the mineral carbonates it dissolves, the first autotroph ever shown to fix mineral carbon, confirming the existence of a direct link between oxidized solid carbon pools and reduced organic pools in the biosphere. Finally, using genomic and transcriptomic approaches, I analyze gene expression searching for additional adaptations related to the endolithic lifestyle. A large and diverse set of genes (24% of 6917 genes) were significantly differentially regulated while boring, including several master regulators and genes expectedly needed under this condition (such as transport, nutrient scavenging, oxidative stress, and calcium-binding protein genes). However, I also discovered the up-regulation of several puzzling gene sets involved in alternative carbon fixation pathways, anaerobic metabolism, and some related to photosynthesis and respiration. This transcriptomic data provides us with several new, readily testable hypotheses regarding adaptations to the endolithic lifestyle. In all, my data clearly show that boring organisms show extraordinarily interesting adaptations.
ContributorsGuida, Brandon Scott (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Chandler, Douglas (Committee member) / Bingham, Scott (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2016
153810-Thumbnail Image.png
Description
Salad bars are promoted as a means to increase fruit and vegetable consumption among school-age children; however, no study has assessed barriers to having salad bars. Further, it is not known if barriers differ across school level. This cross-sectional study investigated the barriers to having salad bars across school level

Salad bars are promoted as a means to increase fruit and vegetable consumption among school-age children; however, no study has assessed barriers to having salad bars. Further, it is not known if barriers differ across school level. This cross-sectional study investigated the barriers to having salad bars across school level among schools without salad bars in Arizona (n=177). Multivariate binominal regression models were used to determine differences between the barriers and school level, adjusting for years at current job, enrollment of school, free-reduced eligibility rate and district level clustering. The top five barriers were not enough staff (51.4%), lack of space for salad bars (49.7%), food waste concerns (37.9%), sanitation/food safety concerns (31.3%), and time to get through the lines (28.3%) Adjusted analyses indicated two significant differences between barriers across school level: time to get through lines (p=0.040) and outside caterer/vendor (p=0.018) with time to get through lines reported more often by elementary and middle school nutrition managers and outside caterer/vendor reported most often by high school nutrition managers. There were several key barriers reported and results indicate that having an outside vendor/caterer for their meal programs and time to get through the service lines varied across school level. High schools report a higher percent of the barrier outside caterer/vendors and elementary and middle schools report a higher percent of the barrier time to get through the lines. Results indicate that research determining the approximate time it takes students to get through salad bar lines will need to be considered. More research is needed to determine if the barrier time to get through the service lines is due to selection of food items or if it is due to the enrollment size of the lunch period. Future research interventions may consider investigating food safety and sanitation concerns of middle school nutrition managers. Findings may be used to guide ways to decrease barriers in schools without salad bars.
ContributorsKebric, Kelsey (Author) / Bruening, Meg (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2016
153966-Thumbnail Image.png
Description
Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model

Biological soil crusts (BSCs) dominate the soil surface of drylands in the western United States and possess properties thought to influence local hydrology. Little agreement exists, however, on the effects of BSCs on runoff, infiltration, and evaporative rates. This study aims to improve the predictive capability of an ecohydrology model in order to understand how BSCs affect the storage, retention, and infiltration of water into soils characteristic of the Colorado Plateau. A set of soil moisture measurements obtained at a climate manipulation experiment near Moab, Utah, are used for model development and testing. Over five years, different rainfall treatments over experimental plots resulted in the development of BSC cover with different properties that influence soil moisture differently. This study used numerical simulations to isolate the relative roles of different BSC properties on the hydrologic response at the plot-scale. On-site meteorological, soil texture and vegetation property datasets are utilized as inputs into a ecohydrology model, modified to include local processes: (1) temperature-dependent precipitation partitioning, snow accumulation and melt, (2) seasonally-variable potential evapotranspiration, (3) plant species-specific transpiration factors, and (4) a new module to account for the water balance of the BSC. Soil, BSC and vegetation parameters were determined from field measurements or through model calibration to the soil moisture observations using the Shuffled Complex Evolution algorithm. Model performance is assessed against five years of soil moisture measurements at each experimental site, representing a wide range of crust cover properties. Simulation experiments were then carried out using the calibrated ecohydrology model in which BSC parameters were varied according to the level of development of the BSC, as represented by the BSC roughness. These results indicate that BSCs act to both buffer against evaporative soil moisture losses by enhancing BSC moisture evaporation and significantly alter the rates of soil water infiltration by reducing moisture storage and increasing conductivity in the BSC. The simulation results for soil water infiltration, storage and retention across a wide range of meteorological events help explain the conflicting hydrologic outcomes present in the literature on BSCs. In addition, identifying how BSCs mediate infiltration and evaporation processes has implications for dryland ecosystem function in the western United States.
ContributorsWhitney, Kristen M (Author) / Vivoni, Enrique R (Thesis advisor) / Farmer, Jack D (Committee member) / Garcia-Pichel, Ferran (Committee member) / Arizona State University (Publisher)
Created2015
154082-Thumbnail Image.png
Description
Yersinia enterocolitica is a major foodborne pathogen found worldwide that causes approximately 87,000 human cases and approximately 1,100 hospitalizations per year in the United States. Y. enterocolitica is a very unique pathogen with the domesticated pig acting as the main animal reservoir for pathogenic bio/serotypes, and as the primary source

Yersinia enterocolitica is a major foodborne pathogen found worldwide that causes approximately 87,000 human cases and approximately 1,100 hospitalizations per year in the United States. Y. enterocolitica is a very unique pathogen with the domesticated pig acting as the main animal reservoir for pathogenic bio/serotypes, and as the primary source of human infection. Similar to other gastrointestinal infections, Yersinia enterocolitica is known to trigger autoimmune responses in humans. The most frequent complication associated with Y. enterocolitica is reactive arthritis - an aseptic, asymmetrical inflammation in the peripheral and axial joints, most frequently occurring as an autoimmune response in patients with the HLA-B27 histocompatability antigen. As a foodborne illness it may prove to be a reasonable explanation for some of the cases of arthritis observed in past populations that are considered to be of unknown etiology. The goal of this dissertation project was to study the relationship between the foodborne illness -Y. enterocolitica, and the incidence of arthritis in individuals with and without contact with the domesticated pig.
ContributorsBrown, Starletta (Author) / Hurtado, Ana M (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Hill, Kim (Committee member) / Arizona State University (Publisher)
Created2015
154500-Thumbnail Image.png
Description
The ocean sequesters more than 25% of the carbon released by anthropogenic action every year, and oligotrophic oceans, such as the Sargasso Sea, are responsible for about 50% of the global carbon export. Pico- and nano-phytoplankton (cells < 5 µm), mostly unicellular eukaryotes (protists) and cyanobacteria, dominate the primary production

The ocean sequesters more than 25% of the carbon released by anthropogenic action every year, and oligotrophic oceans, such as the Sargasso Sea, are responsible for about 50% of the global carbon export. Pico- and nano-phytoplankton (cells < 5 µm), mostly unicellular eukaryotes (protists) and cyanobacteria, dominate the primary production in the Sargasso Sea; however, little is known about their contribution to the export of carbon into the deep ocean via sinking particles. The overall goal of this study is to examine the link between growth and grazing rates of pico- and nano-phytoplankton and the carbon export in the Sargasso Sea. I investigate three aspects: 1) how microzooplankton grazing and physical forcing affect taxon-specific primary productivity in this region, 2) how these microbial trophic dynamics impact their contribution to the export of particulate matter, and 3) how much pico-phytoplankton, specifically the pico-cyanobacteria Synechococcus and Prochlorococcus, contribute to the carbon export. I collected seawater samples within the sunlit (euphotic) zone, and sinking particles at 150 m depth using particle traps in the Sargasso Sea during the winter and summer seasons of 2011 and 2012. I conducted dilution experiments to determine the growth and grazing rates of the pico- and nano-phytoplankton community, and used 454 pyrosequencing and quantitative Polymerase Chain Reaction to measure the relative and absolute contribution of these primary producers to the plankton community within the euphotic zone and in the sinking particles. I found that micrograzing controls taxon-specific primary production, and that microbial trophic dynamics impact directly the taxonomical composition of the sinking particles. For the first time, I was able to quantify clade-specific carbon export of pico-cyanobacteria and found that, despite their small size, these tiny primary producers are capable of sinking from the surface to the deeper oceans. However, their contribution to the carbon flux is often less than one tenth of their biomass contribution in the euphotic zone. Our study provides a comprehensive approach to better understand the role of pico- and nano-phytoplankton in the carbon cycle of oligotrophic oceans, and a baseline to study changes in the carbon export in future warmer oceans.
ContributorsDe Martini, Francesca (Author) / Neuer, Susanne (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Hartnett, Hilairy (Committee member) / Lomas, Michael (Committee member) / Arizona State University (Publisher)
Created2016
154923-Thumbnail Image.png
Description
The aboveground surfaces of plants (i.e. the phyllosphere) comprise the largest biological interface on Earth (over 108 km2). The phyllosphere is a diverse microbial environment where bacterial inhabitants have been shown to sequester and degrade airborne pollutants (i.e. phylloremediation). However, phyllosphere dynamics are not well understood in urban environments,

The aboveground surfaces of plants (i.e. the phyllosphere) comprise the largest biological interface on Earth (over 108 km2). The phyllosphere is a diverse microbial environment where bacterial inhabitants have been shown to sequester and degrade airborne pollutants (i.e. phylloremediation). However, phyllosphere dynamics are not well understood in urban environments, and this environment has never been studied in the City of Phoenix, which maintains roughly 92,000 city trees. The phyllosphere will grow if the City of Phoenix is able to achieve its goal of 25% canopy coverage by 2030, but this begs the question: How and where should the urban canopy expand? I addressed this question from a phyllosphere perspective by sampling city trees of two species, Ulmus parvifolia (Chinese Elm) and Dalbergia sissoo (Indian Rosewood) in parks and on roadsides. I identified characteristics of the bacterial community structure and interpreted the ecosystem service potential of trees in these two settings. I used culture-independent methods to compare the abundance of each unique bacterial lineage (i.e. ontological taxonomic units or OTUs) on the leaves of park trees versus on roadside tree leaves. I found numerous bacteria (81 OTUs) that were significantly more abundant on park trees than on roadside trees. Many of these OTUs are ubiquitous to bacterial phyllosphere communities, are known to promote the health of the host tree, or have been shown to degrade airborne pollutants. Roadside trees had fewer bacteria (10 OTUs) that were significantly more abundant when compared to park trees, but several have been linked to the remediation of petroleum combustion by-products. These findings, that were not available prior to this study, may inform the City of Phoenix as it is designing its future urban forests.
ContributorsMacNeille, Benjamin C (Author) / Childers, Daniel L. (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Cease, Arianne J (Committee member) / Arizona State University (Publisher)
Created2016
153933-Thumbnail Image.png
Description
The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a NiFe-type bidirectional hydrogenase that is capable of using reducing equivalents to reduce protons and generate H¬2. In order to achieve sustained H2 production using this cyanobacterium many challenges need to be overcome. Reported H2 production from Synechocystis is of low rate

The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a NiFe-type bidirectional hydrogenase that is capable of using reducing equivalents to reduce protons and generate H¬2. In order to achieve sustained H2 production using this cyanobacterium many challenges need to be overcome. Reported H2 production from Synechocystis is of low rate and often transient. Results described in this dissertation show that the hydrogenase activity in Synechocystis is quite different during periods of darkness and light. In darkness, the hydrogenase enzyme acts in a truly bidirectional way and a particular H2 concentration is reached that depends upon the amount of biomass involved in H2 production. On the other hand, in the presence of light the enzyme shows only transient H2 production followed by a rapid and constitutive H2 oxidation. H2 oxidation and production were measured from a variety of Synechocystis strains in which components of the photosynthetic or respiratory electron transport chain were either deleted or inhibited. It was shown that the light-induced H2 oxidation is dependent on the activity of cytochrome b6f and photosystem I but not on the activity of photosystem II, indicating a channeling of electrons through cytochrome b6f and photosystem I. Because of the sequence similarities between subunits of NADH dehydrogenase I in E. coli and subunits of hydrogenase in Synechocystis, NADH dehydrogenase I was considered as the most likely candidate to mediate the electron transfer from hydrogenase to the membrane electron carrier plastoquinone, and a three-dimensional homology model with the associated subunits shows that structurally it is possible for the subunits of the two complexes to assemble. Finally, with the aim of improving the rate of H2 production in Synechocystis by using a powerful hydrogenase enzyme, a mutant strain of Synechocystis was created in which the native hydrogenase was replaced with the hydrogenase from Lyngbya aestuarii BL J, a strain with higher capacity for H2 production. H2 production was detected in this Synechocystis mutant strain, but only in the presence of external reductants. Overall, this study emphasizes the importance of redox partners in determining the direction of H2 flux in Synechocystis.
ContributorsDatta, Īpsitā (Author) / Vermaas, Willem Fj (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Rittmann, Bruce (Committee member) / Jones, Anne K (Committee member) / Arizona State University (Publisher)
Created2015
152496-Thumbnail Image.png
Description
Background: Childhood obesity is one of the most serious public health concerns in the United States and has been associated with low levels of physical activity. Schools are ideal physical activity promotion sites but school physical activity opportunities have decreased due the increased focus on academic performance. Before-school programs provide

Background: Childhood obesity is one of the most serious public health concerns in the United States and has been associated with low levels of physical activity. Schools are ideal physical activity promotion sites but school physical activity opportunities have decreased due the increased focus on academic performance. Before-school programs provide a good opportunity for children to engage in physical activity as well as improve their readiness to learn. Purpose: The purpose of this study was to examine the effect of a before-school running/walking club on children's physical activity and on-task behavior. Methods: Participants were third and fourth grade children from two schools in the Southwestern United States who participated in a before-school running/walking club that met two times each week. The study employed a two-phase experimental design with an initial baseline phase and an alternating treatments phase. Physical activity was monitored using pedometers and on-task behavior was assessed through systematic observation. Data analysis included visual analysis, descriptive statistics, as well as multilevel modeling. Results: Children accumulated substantial amounts of physical activity within the before-school program (School A: 1731 steps, 10:02 MVPA minutes; School B: 1502 steps, 8:30 MVPA minutes) and, on average, did not compensate by decreasing their physical activity during the rest of the school day. Further, on-task behavior was significantly higher on days the children attended the before-school program than on days they did not (School A=15.78%, pseudo-R2=.34 [strong effect]; School B=14.26%, pseudo-R2=.22 [moderate effect]). Discussion: Results provide evidence for the positive impact of before-school programs on children's physical activity and on-task behavior. Such programs do not take time away from academics and may be an attractive option for schools.
ContributorsStylianou, Michalis (Author) / Kulinna, Pamela H. (Thesis advisor) / Van Der Mars, Hans (Committee member) / Amazeen, Eric (Committee member) / Adams, Marc (Committee member) / Mahar, Matthew T. (Committee member) / Arizona State University (Publisher)
Created2014