Matching Items (99)
Filtering by

Clear all filters

190974-Thumbnail Image.png
Description
Advancements in high-throughput biotechnologies have generated large-scale multi-omics datasets encompassing diverse dimensions such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, and phenomics. Traditionally, statistical and machine learning-based approaches utilize single-omics data sources to uncover molecular signatures, dissect complicated cellular mechanisms, and predict clinical results. However, to capture the multifaceted pathological

Advancements in high-throughput biotechnologies have generated large-scale multi-omics datasets encompassing diverse dimensions such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, and phenomics. Traditionally, statistical and machine learning-based approaches utilize single-omics data sources to uncover molecular signatures, dissect complicated cellular mechanisms, and predict clinical results. However, to capture the multifaceted pathological mechanisms, integrative multi-omics analysis is needed that can provide a comprehensive picture of the disease. Here, I present three novel approaches to multi-omics integrative analysis. I introduce a single-cell integrative clustering method, which leverages multi-omics to enhance the resolution of cell subpopulations. Applied to a Cellular Indexing of Transcriptomes and Epitopes (CITE-Seq) dataset from human Acute Myeloid Lymphoma (AML) and control samples, this approach unveiled nuanced cell populations that otherwise remain elusive. I then shift the focus to a computational framework to discover transcriptional regulatory trios in which a transcription factor binds to a regulatory element harboring a genetic variant and subsequently differentially regulates the transcription level of a target gene. Applied to whole-exome, whole-genome, and transcriptome data of multiple myeloma samples, this approach discovered synergetic cis-acting and trans-acting regulatory elements associated with tumorigenesis. The next part of this work introduces a novel methodology that leverages the transcriptome and surface protein data at the single-cell level produced by CITE-Seq to model the intracellular protein trafficking process. Applied to COVID-19 samples, this approach revealed dysregulated protein trafficking associated with the severity of the infection.
ContributorsMudappathi, Rekha (Author) / Liu, Li (Thesis advisor) / Dinu, Valentin (Committee member) / Sun, Zhifu (Committee member) / Arizona State University (Publisher)
Created2023
Description
Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and

Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and associated stigma in the context of the parent-child relationship. This cross-sectional study examined self-reported weight stigma experience and internalization within 42 parent/adolescent dyads to provide greater understanding of how adolescents and parents are experiencing and internalizing weight stigma independently and transversely.
ContributorsMillett, Emma (Author) / McEntee, Mindy (Thesis director) / Adams, Marc (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-12
Description
A genome wide association study (GWAS) of treatment outcomes for citalopram and escitalopram, two frontline SSRI treatments for Major Depressive Disorder, was conducted with 529 subjects on an imputed dataset. While no variants of genome-wide significance were identified, various potentially interesting variants were identified that warrant further exploration. These findings

A genome wide association study (GWAS) of treatment outcomes for citalopram and escitalopram, two frontline SSRI treatments for Major Depressive Disorder, was conducted with 529 subjects on an imputed dataset. While no variants of genome-wide significance were identified, various potentially interesting variants were identified that warrant further exploration. These findings have the potential to elucidate novel mechanisms underlying drug response for SSRIs. This work will be continued further, with machine learning and deep learning analyses to perform non-linear analyses and employing a biologist or geneticist to provide more specialized knowledge for interpretation of results.
ContributorsLeiter-Weintraub, Ethan (Author) / Dinu, Valentin (Thesis director) / Scotch, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2024-05
189311-Thumbnail Image.png
Description
Background: Studies have examined student fruit/vegetable (FV) consumption, selection, and waste related to lunch duration and found that longer duration at lunch was associated with greater consumption, selection, and reduced waste. However, few studies have investigated the relationship between time to eat and FVs. The aim of this research is

Background: Studies have examined student fruit/vegetable (FV) consumption, selection, and waste related to lunch duration and found that longer duration at lunch was associated with greater consumption, selection, and reduced waste. However, few studies have investigated the relationship between time to eat and FVs. The aim of this research is to analyze the relationship between objective time to students took to eat (“time to eat”) as it relates to their fruit and vegetable consumption, selection, and plate waste.in elementary, middle, and high schools. Methods: A secondary analysis of cross-sectional study of 37 Arizona schools to discover the differences in the selection, consumption, and waste of FVs from students (Full N = 2226, Elementary N = 630, Middle School N = 699, High School N = 897) using objective time to eat measures. Zero-inflated negative binomial regressions examined differences in FV grams selected, consumed, and wasted adjusted for sociodemographics including race, ethnicity, eligibility for free or reduced lunch, academic year, and sex and clustering for students within schools. Results are presented across school level (elementary, middle, and high school). Results: The average time taken to eat ranged from 10-12 minutes for all students. The association of time to eat and lunch duration were not closely related (r=0.03, p = 0.172). In the count model for every additional minute spent, there was a 0.5% greater likelihood of selecting FVs for elementary kids among those who took any FVs. In the zero-inflated model, it was found that there was a statistically significant relationship between time spent eating and the selection of fruits and vegetables. For the total sample and high schoolers, a minute more of eating time was associated with a 4.3% and 8.8% greater odds of selecting FV. This means that longer eating time increased the likelihood of choosing fruits and vegetables. The results indicated that the longer students took to eat, the higher the likelihood of consuming more of FVs. Each 10 more minutes spent eating (i.e., time to eat) is associated with a 5% increase in grams of FV selected relative to mean (for those that chose FV) over 1 week this equates to 32 g increase of FV selected. However, for middle schoolers, the time to eat was not found to be significant in relation to the grams of fruits and vegetables consumed. There was some significance in the sociodemographic factors such as gender (all) and other (middle school). There was a relationship between time taken to eat and waste as a proportion for fruits and vegetables. For example, among those among the students who wasted something (as a proportion of selection), each additional 10 minutes of eating time was associated with a .6% decrease in waste relative to the mean (for those who chose fruits and vegetables) over a week, resulting in a decrease in waste percentage of 16.5%. Among high schoolers, males had a slightly higher odds of wasting a proportion of fruits and vegetables. Conclusions: This study aimed to examine the association between the time students take to eat during lunch and their fruit and vegetable (FV) consumption, selection, and plate waste. The findings revealed that the time to eat was related to FV consumption, depending on the school level. However, it was not significantly associated with FV selection or waste. The study emphasized the need for further research on time to eat, distinguishing it from the duration of lunch. Longer lunch periods and adequate time could influence better food choices, increased FV consumption, and reduced waste. The study highlighted the importance of interventions and school policies promoting healthier food choices and providing sufficient time for students to eat. Future research should validate these findings and explore the impact of socialization opportunities on promoting healthier eating habits. Understanding the relationship between lunch duration, time to eat, and students' dietary behaviors can contribute to improved health outcomes and inform effective strategies in school settings.
ContributorsDandridge, Christina Marie (Author) / Adams, Marc (Thesis advisor) / Whisner, Corrie (Committee member) / Bruening, Meg (Committee member) / Arizona State University (Publisher)
Created2023
168722-Thumbnail Image.png
Description
Vitamin D is a nutrient that is obtained through the diet and vitamin D supplementation and created from exposure to Ultraviolet B (UVB) radiation. While there are many factors that determine how much serum 25-hydroxyvitamin D (25(OH)D) concentration is in the body, little is known about how genetic variation in

Vitamin D is a nutrient that is obtained through the diet and vitamin D supplementation and created from exposure to Ultraviolet B (UVB) radiation. While there are many factors that determine how much serum 25-hydroxyvitamin D (25(OH)D) concentration is in the body, little is known about how genetic variation in vitamin D-related genes influences serum 25(OH)D concentrations resulting from daily vitamin D intake and exposure to direct sunlight. Previous studies show that common genetic variants rs10741657 (CYP2R1), rs4588 (GC), rs228678 (GC), and rs4516035 (VDR) act as moderators and alter the effect of outdoor time and vitamin D intake on serum 25(OH)D concentrations. The objective of this study is to analyze the associations between serum 25(OH)D concentrations resulting from outdoor time and vitamin D intake, and genetic risk scores (GRS) established from previous studies involving single nucleotide polymorphisms (SNP) located on or near genes involving vitamin D synthesis, transport, activation, and degradation in 102 Hispanic and Non-Hispanic adults in the San Diego County, California. This study is a secondary analysis of data from the Community of Mine study. Global Positioning System (GPS) data collected by the Qstarz GPS device worn by each participant was used to measure outdoor time, a proxy measurement for sun exposure time. Vitamin D intake was assessed using two 24-hour dietary recalls. Blood samples were measured for serum 25(OH)D concentrations. DNA was provided to assess each participant for the various genetic variants. Adjusted analyses of the GRS and serum 25(OH)D concentrations showed that individuals with high GRS (3-4) had lower serum 25(OH)D concentrations than individuals with low GRS (0-2) for both Nissen GRS and Rivera-Paredez GRS.
ContributorsAnderson, Heather Ray (Author) / Sears, Dorothy (Thesis advisor) / Alexon, Christy (Committee member) / Dinu, Valentin (Committee member) / Jankowska, Marta (Committee member) / Arizona State University (Publisher)
Created2022
187723-Thumbnail Image.png
Description
Tools designed to help match people with behaviors they identify as likely to lead to a successful behavioral outcome remain under-researched. This study assessed the effect of a participant-driven behavior-matching intervention on 1) the adoption of a new behavior related to fruit and vegetable (F&V) consumption, 2) study attrition, and

Tools designed to help match people with behaviors they identify as likely to lead to a successful behavioral outcome remain under-researched. This study assessed the effect of a participant-driven behavior-matching intervention on 1) the adoption of a new behavior related to fruit and vegetable (F&V) consumption, 2) study attrition, and 3) changes in F&V consumption. In this two-arm randomized controlled trial, 64 adults who did not meet standard F&V recommendations were allocated to an intervention (n=33) or control group (n=31). Participants in the intervention group ranked 20 F&V-related behaviors according to their perceived likelihood of engagement in the behavior and their perception of the behavior’s efficacy in increasing F&V consumption. Participants in the intervention group were subsequently shown the list of 20 behaviors in order of their provided rankings, with the highest-ranked behaviors at the top, and were asked to choose a behavior they would like to perform daily for 4 weeks. The control group chose from a random-order list of the same 20 behaviors to adopt daily for 4 weeks. During the study period, text messages were sent to all participants 90 minutes before their reported bedtime to collect Yes/No data reflecting successful behavior engagement each day. The binary repeated-measures data collected from the text messages was analyzed using mixed-effects logistic regression, differences in attrition were assessed using log-rank analysis, and change scores in F&V consumption were compared between the two groups using the Man-Whitney U test. P<0.05 indicated significance. The rate of successful behavior adoption did not differ significantly between the two groups (b=0.09, 95%CI= -0.81, 0.98, p=0.85). The log rank test results indicated that there was no significant difference in attrition between the two groups (χ2=2.68, df=1, p=0.10). F&V consumption increased significantly over the 4 weeks in the total sample (Z=-5.86, p<0.001), but no differences in F&V change scores were identified between the control and intervention groups (Z=-0.21, p=0.84). The behavior-matching tool assessed in this study did not significantly improve behavior adoption, study attrition, or F&V intake over 4 weeks.
ContributorsCosgrove, Kelly Sarah (Author) / Wharton, Christopher (Thesis advisor) / Adams, Marc (Committee member) / DesRoches, Tyler (Committee member) / Grebitus, Carola (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2023
156777-Thumbnail Image.png
Description
Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR)

Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR) ecosystems for purposes of orchestrating the user experiences of patients and clinicians. To date, the gap between knowledge representation and user-facing EHR integration has been considered an “implementation concern” requiring unscalable manual human efforts and governance coordination. Drafting a questionnaire engineered to meet the specifications of the HL7 CDS Knowledge Artifact specification, for example, carries no reasonable expectation that it may be imported and deployed into a live system without significant burdens. Dramatic reduction of the time and effort gap in the research and application cycle could be revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of functional boundaries in the knowledge management lifecycle, as well as formalization of the human processes by which this occurs.

This research introduces ARTAKA: Architecture for Real-Time Application of Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both provider heath IT (HIT) and vendor organizations to incrementally introduce value into existing systems dynamically. This is made possible by service-ization of curated knowledge artifacts, then injected into a highly scalable backend infrastructure by automated orchestration through public marketplaces. Supplementary examples of client app integration are also provided. Compilation of knowledge into platform-specific form has been left flexible, in so far as implementations comply with ARTAKA’s Context Event Service (CES) communication and Health Services Platform (HSP) Marketplace service packaging standards.

Towards the goal of interoperable human processes, ARTAKA’s treatment of knowledge artifacts as a specialized form of software allows knowledge engineers to operate as a type of software engineering practice. Thus, nearly a century of software development processes, tools, policies, and lessons offer immediate benefit: in some cases, with remarkable parity. Analyses of experimentation is provided with guidelines in how choice aspects of software development life cycles (SDLCs) apply to knowledge artifact development in an ARTAKA environment.

Portions of this culminating document have been further initiated with Standards Developing Organizations (SDOs) intended to ultimately produce normative standards, as have active relationships with other bodies.
ContributorsLee, Preston Victor (Author) / Dinu, Valentin (Thesis advisor) / Sottara, Davide (Committee member) / Greenes, Robert (Committee member) / Arizona State University (Publisher)
Created2018
156520-Thumbnail Image.png
Description
Study of canine cancer’s molecular underpinnings holds great potential for informing veterinary and human oncology. Sporadic canine cancers are highly abundant (~4 million diagnoses/year in the United States) and the dog’s unique genomic architecture due to selective inbreeding, alongside the high similarity between dog and human genomes both confer power

Study of canine cancer’s molecular underpinnings holds great potential for informing veterinary and human oncology. Sporadic canine cancers are highly abundant (~4 million diagnoses/year in the United States) and the dog’s unique genomic architecture due to selective inbreeding, alongside the high similarity between dog and human genomes both confer power for improving understanding of cancer genes. However, characterization of canine cancer genome landscapes has been limited. It is hindered by lack of canine-specific tools and resources. To enable robust and reproducible comparative genomic analysis of canine cancers, I have developed a workflow for somatic and germline variant calling in canine cancer genomic data. I have first adapted a human cancer genomics pipeline to create a semi-automated canine pipeline used to map genomic landscapes of canine melanoma, lung adenocarcinoma, osteosarcoma and lymphoma. This pipeline also forms the backbone of my novel comparative genomics workflow.

Practical impediments to comparative genomic analysis of dog and human include challenges identifying similarities in mutation type and function across species. For example, canine genes could have evolved different functions and their human orthologs may perform different functions. Hence, I undertook a systematic statistical evaluation of dog and human cancer genes and assessed functional similarities and differences between orthologs to improve understanding of the roles of these genes in cancer across species. I tested this pipeline canine and human Diffuse Large B-Cell Lymphoma (DLBCL), given that canine DLBCL is the most comprehensively genomically characterized canine cancer. Logistic regression with genes bearing somatic coding mutations in each cancer was used to determine if conservation metrics (sequence identity, network placement, etc.) could explain co-mutation of genes in both species. Using this model, I identified 25 co-mutated and evolutionarily similar genes that may be compelling cross-species cancer genes. For example, PCLO was identified as a co-mutated conserved gene with PCLO having been previously identified as recurrently mutated in human DLBCL, but with an unclear role in oncogenesis. Further investigation of these genes might shed new light on the biology of lymphoma in dogs and human and this approach may more broadly serve to prioritize new genes for comparative cancer biology studies.
ContributorsSivaprakasam, Karthigayini (Author) / Dinu, Valentin (Thesis advisor) / Trent, Jeffrey (Thesis advisor) / Hendricks, William (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2018
157241-Thumbnail Image.png
Description
Objective: It’s not well understood how youth perceive existing fruit and vegetable (FV) marketing materials available in schools. This ancillary study sought to assess the acceptability of FV marketing materials freely available to schools among adolescents in grades 6-12.

Methods: Middle and high school adolescents (n=40; 50% female; 52.5% Hispanic) in

Objective: It’s not well understood how youth perceive existing fruit and vegetable (FV) marketing materials available in schools. This ancillary study sought to assess the acceptability of FV marketing materials freely available to schools among adolescents in grades 6-12.

Methods: Middle and high school adolescents (n=40; 50% female; 52.5% Hispanic) in the Phoenix, AZ area were asked to rank marketing materials (n=35) from favorite to least favorite in four categories: table tents, medium posters, large posters and announcements. Favorites were determined by showing participants two items at a time and having them choose which they preferred; items were displayed to each adolescent in a random order. Adolescents participated in a 20-30 minute interview on their favorite items in each category based on acceptance/attractiveness, comprehension, relevance, motivation and uniqueness of the materials. A content analysis was performed on top rated marketing materials. Top rated marketing materials were determined by the number of times the advertisement was ranked first in its category.

Results: An analysis of the design features of the items indicated that most participants (84%) preferred marketing materials with more than 4 color groups. Participant preference of advertisement length and word count was varied. A total of 5 themes and 20 subthemes emerged when participants discussed their favorite FV advertisements. Themes included: likes (e.g., colors, length, FV shown), dislikes (e.g., length, FV shown), health information (e.g., vitamin shown), comprehension (e.g., doesn’t recognize FV), and social aspects (e.g., peer opinion). Peer opinion often influenced participant opinion on marketing materials. Participants often said peers wouldn’t like the advertisements shown: “…kids my age think that vegetables are not good, and they like food more than vegetables.” Fruits and vegetable pictured as well as the information in the marketing materials also influenced adolescent preference.

Conclusion: Students preferred advertisements with more color and strong visual aspects. Word count had minimal influence on their opinions of the marketing materials, while information mentioned and peer opinion did have a positive effect. Further research needs to be done to determine if there is a link between adolescent preferences on FV marketing materials and FV consumption habits.
ContributorsPisano, Sydney Alexis (Author) / Bruening, Meg (Thesis advisor) / Adams, Marc (Committee member) / Grgich, Traci (Committee member) / Arizona State University (Publisher)
Created2019
157288-Thumbnail Image.png
Description
College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional

College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional study was to determine whether sleep patterns and physical activity observed in college students (N= 52) 18-25 years old at Arizona State University influenced bone biomarkers, osteocalcin (OC) and N-terminal telopeptide of type 1 collagen (NTX-1) concentrations. Students completed various dietary and health history questionnaires including the International Physical Activity Questionnaire short form. Students wore an actigraphy watch for 7 consecutive nights to record sleep events including total sleep time, sleep onset latency and wake after sleep onset. Total sleep time had a significant, negative correlation with OC (r = -0.298, p-value =0.036) while sleep onset latency had a significant, positive correlation with NTX-1 serum concentration (r = 0.293, p-value = 0.037). Despite correlational findings, only sleep percent was found to be significant (beta coefficient = 0.271 p-value = 0.788) among all the sleep components assessed, after adjusting for gender, race, BMI and calcium intake in multivariate regression models. Physical activity alone was not associated with either bone biomarker. Physical activity*sleep onset latency interactions were significantly correlated with osteocalcin (r = 0.308, p-value =0.006) and NTX-1 (r = 0.286, p-value = 0.042) serum concentrations. Sleep percent*physical activity interactions were significantly correlated with osteocalcin (r = 0.280, p-value = 0.049) but not with NTX-1 serum concentrations. Interaction effects were no longer significant after adjusting for covariates in the regression models. While sleep percent was a significant component in the regression model for NTX-1, it was not clinically significant. Overall, sleep patterns and physical activity did not explain OC and NTX-1 serum concentrations in college students 18-25 years old. Future studies may need to consider objective physical activity devices including accelerometers to measure activity levels. At this time, college students should review sleep and physical activity recommendations to ensure optimal healthy habits are practiced.
ContributorsMahmood, Tara Nabil (Author) / Whisner, Corrie (Thesis advisor) / Dickinson, Jared (Committee member) / Petrov, Megan (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019