Matching Items (87)
134426-Thumbnail Image.png
Description
Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and

Genetic manipulation of human cell lines has widespread applications in biomedical research ranging from disease modeling to therapeutic development. Human cells are generally difficult to genetically engineer, but exogenous nucleic acids can be expressed by viral, chemical, or nonchemical means. Chemical transfections are simpler in practice than both viral and nonchemical delivery of genetic material, but often suffer from cytotoxicity and low efficiency. Novel aminoglycoside antibiotic-derived lipopolymers have been synthesized to mediate transgene delivery to human cells. These polymers are comprised of either paromomycin or apramycin crosslinked with glycerol diglycidylether and derivatized with stearoyl chloride in varying molar ratios. In this work, three previously identified target lipopolymers were screened against a library of human embryonic and induced pluripotent stem cell lines. Cells were transfected with a plasmid encoding green fluorescent protein (GFP) and expression was quantified with flow cytometry 48 hours after transfection. Transfection efficiency was evaluated between three distinct lipopolymers and four lipopolymer:DNA mass ratios. GFP expression was compared to that of cells transfected with commercially available chemical gene delivery reagent controls\u2014JetPEI, Lipofectamine, and Fugene\u2014at their recommended reagent:DNA ratios. Improved transgene expression in stem cell lines allows for improved research methods. Human stem cell-derived neurons that have been genetically manipulated to express phenotypic characteristics of aging can be utilized to model neurodegenerative diseases, elucidating information about these diseases that would be inaccessible in unmanipulated tissue.
ContributorsMehta, Frea (Author) / Brafman, David (Thesis director) / Rege, Kaushal (Committee member) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134936-Thumbnail Image.png
Description
It is well established that physical activity (PA) directly correlates with many health benefits, especially when active habits are formed during childhood and adolescence. PA practiced in adolescence has been seen to carry into adulthood, helping to combat a host of chronic diseases, such as obesity and diabetes. However, in

It is well established that physical activity (PA) directly correlates with many health benefits, especially when active habits are formed during childhood and adolescence. PA practiced in adolescence has been seen to carry into adulthood, helping to combat a host of chronic diseases, such as obesity and diabetes. However, in recent years there has been a steady decline in PA among adolescents, followed by a resulting rise in sedentary behavior. Walking Intervention Through Texting for Adolescents, or WalkIT-A, was an 11.5-week intervention that built upon behavioral theory to provide an incentive-based, adaptive, physical activity intervention to inactive adolescents. The goal of this study was to investigate an intervention which combined walking with pointed behavior change strategies to incite a larger increase in PA. Using single-case, reversal (ABA) design, the study was aimed at shaping physical activity behavior in adolescents aged 12-17 through a mobile health intervention that paired adaptive goal setting with financial incentives to increase step count. The intervention was delivered using a semi-automated texting, mobile-Health (mHealth) platform, which incorporated FitBit tracking technology, adaptive goals, motivational messages, performance feedback, and points/incentives. It was hypothesized that during the adaptive intervention phase participants would increase both steps per day and active minutes compared to baseline values. Upon conclusion of the study, the three adolescent participants exhibited increased steps and active minutes during the intervention period compared to baseline and withdrawal phases. However, the specific trends identified suggest the need for future research to incorporate even stronger intervention components to overcome PA "drop-off" midway through the intervention, along with other external, environmental influencers. Despite this need, the use of adaptive goal setting combined with incentives can be an effective means to incite PA behavior change in adolescents.
ContributorsVan Bussum, Courtney Jessica (Author) / Adams, Marc (Thesis director) / Forzani, Erica (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2016-12
134621-Thumbnail Image.png
Description
the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy

the project led by Professor Emma Frow, researching of stem cell clinics focused on stem cell applications, adherence to FDA guidelines, and characterization of information available and physician credentials. Regenerative medicine clinics commonly offered stem cell therapy, but introduced platelet rich plasma (PRP) and prolotherapy as regenerative therapies.
PRP and Prolotherapy are individual treatments that were even suggested and used in combination with stem cell therapies. Prolotherapy predates PRP as a chemical irritant therapy originally used to sclerose tissues. Prolotherapy is meant to stimulate platelet derived growth factors release to improve tissue healing response. Prolotherapy shows negligible efficacy improvements over corticosteroids, but may have underlying side effects from being an irritant. PRP is a more modern therapy for improved healing. Speculations state initial use was in an open heart surgery to improve healing post-surgery. PRP is created via centrifugation of patient blood to isolate growth factors by removing serum and other biological components to increase platelet concentration. PRP is comparable to corticosteroid injections in efficacy, but as an autologous application, there are no side effects making it more advantageous. Growth factors induce healing response and reduce inflammation. Growth factors stimulate cell growth, proliferation, differentiation, and stimulate cellular response mechanism such as angiogenesis and mitogenesis. The growth factor stimulation of PRP and prolotherapy both assist stem cell proliferation. Additional research is needed to determine differential capacity to ensure multipotent stem cells regenerate the correct cell type from the increased differential capacity offered by growth factor recruitment. The application of combination therapy for stem cells is unsubstantiated and applications violate FDA ‘minimal manipulation’ guidelines.
ContributorsKrum, Logan (Author) / Frow, Emma (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135297-Thumbnail Image.png
Description
Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live cells over a longer period of time. As such, there is a need for a live-cell sensor that can detect chromatin state changes. The Chromometer is a transgenic chromatin state sensor designed to better understand human cell fate and the chromatin changes that occur. HOXD11.12, a DNA sequence that attracts repressive Polycomb group (PCG) proteins, was placed upstream of a core promoter-driven fluorescent reporter (AmCyan fluorescent protein, CFP) to link chromatin repression to a CFP signal. The transgene was stably inserted at an ectopic site in U2-OS (osteosarcoma) cells. Expression of CFP should reflect the epigenetic state at the HOXD locus, where several genes are regulated by Polycomb to control cell differentiation. U2-OS cells were transfected with the transgene and grown under selective pressure. Twelve colonies were identified as having integrated parts from the transgene into their genomes. PCR testing verified 2 cell lines that contain the complete transgene. Flow cytometry indicated mono-modal and bimodal populations in all transgenic cell colonies. Further research must be done to determine the effectiveness of this device as a sensor for live cell state change detection.
ContributorsBarclay, David (Co-author) / Simper, Jan (Co-author) / Haynes, Karmella (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
161566-Thumbnail Image.png
Description
Objective: Increasing fruit/vegetable (FV) consumption and decreasing waste during the school lunch is a public health priority. Understanding how serving style of FV impacts FV consumption and waste may be an effective means to changing nutrition behaviors in schools. This study examined whether students were more likely to select, consume,

Objective: Increasing fruit/vegetable (FV) consumption and decreasing waste during the school lunch is a public health priority. Understanding how serving style of FV impacts FV consumption and waste may be an effective means to changing nutrition behaviors in schools. This study examined whether students were more likely to select, consume, and waste FV when FVs were cut vs. whole. Methods: Baseline data from the ASU School Lunch Study was used to explore associations between cut vs. whole FV serving style and objectively measured FV selection, consumption, and waste and grade level interactions among a random selection of students (n=6804; 47.8% female; 78.8% BIPOC) attending Arizona elementary, middle, and high schools (N=37). Negative binomial regression models evaluated serving style on FV weight (grams) selected, consumed, and wasted, adjusted for sociodemographics and school. Results: Students were more likely to select cut FVs (IRR=1.11; 95% CI: 1.04, 1.18) and waste cut FVs (IRR=1.20; 95% CI: 1.04, 1.39); however, no differences were observed in the overall consumption of cut vs. whole FVs. Grade-level interactions impacted students’ selection of FVs. Middle school students had a significantly higher effect modification for the selection of cut FVs (IRR=1.18; p=0.006) compared to high school and elementary students. Further, high school students had a significantly lower effect modification for the selection of cut FVs (IRR=0.83; p=0.010) compared to middle and elementary students. No other grade-level interactions were observed. Discussion: Serving style of FV may impact how much FV is selected and wasted, but further research is needed to determine causality between these variables.
ContributorsJames, Amber Chandarana (Author) / Bruening, Meredith (Thesis advisor) / Adams, Marc (Thesis advisor) / Koskan, Alexis (Committee member) / Arizona State University (Publisher)
Created2021
Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
171604-Thumbnail Image.png
Description
Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing

Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing rate or advanced functional intricacy. The gold standard treatment for skin wound healing is suturing. Light-activated tissue sealing is an appealing alternative to sutures as it seals the wound edges minimizing the risk of infection and scarring, especially when utilized along with biodegradable polymeric biomaterials in the wound bed. Silk fibroins can be used as a biodegradable biomaterial that possesses properties supporting cell migration and proliferation in the tissue it interacts with. In addition, histamine treatment is shown to have extensive effects on cellular functions promoting wound healing. Here, the evaluation of Laser-activated Sealants (LASE) consisting of silk fibroin films induced with Indocyanine Green dye in a wound sealed with laser in the presence of Histamine receptor agonists H1R, H2R and H4R take place. The results were evaluated using Trans-epidermal Water Loss (TEWL), histological and analytical techniques where immune cell biomarkers Arginase-1, Ly6G, iNOS, Alpha-SMA, Proliferating Cell Nuclear Antigen (PCNA), and E-Cadherin were used to study the activity of specific cells such as macrophages, neutrophils, and myofibroblasts that aid in wound healing. PBS was used as a control for histamine receptor agonists. It was found that TEWL increased when treated with H1 receptor agonists while decreasing significantly in H2R and H4R-treated wounds. Arginase-1 activity improved, while it displayed an inverse relationship compared to iNOS. H4R agonist escalated Alpha-SMA cells, while others did not have any significant difference. Ly6G activity depleted in all histamine agonists significantly, while PCNA and E-Cadherin failed to show a positive or negative effect.
ContributorsPatel, Dirghau Manishbhai (Author) / Rege, Kaushal (Thesis advisor) / Massia, Stephen (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2022
171472-Thumbnail Image.png
Description
The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime

The advent of CRISPR/Cas9 revolutionized the field of genetic engineering and gave rise to the development of new gene editing tools including prime editing. Prime editing is a versatile gene editing method that mediates precise insertions and deletions and can perform all 12 types of point mutations. In turn, prime editing represents great promise in the design of new gene therapies and disease models where editing was previously not possible using current gene editing techniques. Despite advancements in genome modification technologies, parallel enrichment strategies of edited cells remain lagging behind in development. To this end, this project aimed to enhance prime editing using transient reporter for editing enrichment (TREE) technology to develop a method for the rapid generation of clonal isogenic cell lines for disease modeling. TREE uses an engineered BFP variant that upon a C-to-T conversion will convert to GFP after target modification. Using flow cytometry, this BFP-to-GFP conversion assay enables the isolation of edited cell populations via a fluorescent reporter of editing. Prime induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), pairs prime editing with TREE technology to efficiently enrich for prime edited cells. This investigation revealed PINE-TREE as an efficient editing and enrichment method compared to a conventional reporter of transfection (RoT) enrichment strategy. Here, PINE-TREE exhibited a significant increase in editing efficiencies of single nucleotide conversions, small insertions, and small deletions in multiple human cell types. Additionally, PINE-TREE demonstrated improved clonal cell editing efficiency in human induced pluripotent stem cells (hiPSCs). Most notably, PINE-TREE efficiently generated clonal isogenic hiPSCs harboring a mutation in the APOE gene for in vitro modeling of Alzheimer’s Disease. Collectively, results gathered from this study exhibited PINE-TREE as a valuable new tool in genetic engineering to accelerate the generation of clonal isogenic cell lines for applications in developmental biology, disease modeling, and drug screening.
ContributorsKostes, William Warner (Author) / Brafman, David (Thesis advisor) / Jacobs, Bertram (Committee member) / Lapinaite, Audrone (Committee member) / Tian, Xiaojun (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
Description
Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and

Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and associated stigma in the context of the parent-child relationship. This cross-sectional study examined self-reported weight stigma experience and internalization within 42 parent/adolescent dyads to provide greater understanding of how adolescents and parents are experiencing and internalizing weight stigma independently and transversely.
ContributorsMillett, Emma (Author) / McEntee, Mindy (Thesis director) / Adams, Marc (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-12
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022