Matching Items (168)
148155-Thumbnail Image.png
Description

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of

A novel concept for integration of flame-assisted fuel cells (FFC) with a gas turbine is analyzed in this paper. Six different fuels (CH4, C3H8, JP-4, JP-5, JP-10(L), and H2) are investigated for the analytical model of the FFC integrated gas turbine hybrid system. As equivalence ratio increases, the efficiency of the hybrid system increases initially then decreases because the decreasing flow rate of air begins to outweigh the increasing hydrogen concentration. This occurs at an equivalence ratio of 2 for CH4. The thermodynamic cycle is analyzed using a temperature entropy diagram and a pressure volume diagram. These thermodynamic diagrams show as equivalence ratio increases, the power generated by the turbine in the hybrid setup decreases. Thermodynamic analysis was performed to verify that energy is conserved and the total chemical energy going into the system was equal to the heat rejected by the system plus the power generated by the system. Of the six fuels, the hybrid system performs best with H2 as the fuel. The electrical efficiency with H2 is predicted to be 27%, CH4 is 24%, C3H8 is 22%, JP-4 is 21%, JP-5 is 20%, and JP-10(L) is 20%. When H2 fuel is used, the overall integrated system is predicted to be 24.5% more efficient than the standard gas turbine system. The integrated system is predicted to be 23.0% more efficient with CH4, 21.9% more efficient with C3H8, 22.7% more efficient with JP-4, 21.3% more efficient with JP-5, and 20.8% more efficient with JP-10(L). The sensitivity of the model is investigated using various fuel utilizations. When CH4 fuel is used, the integrated system is predicted to be 22.7% more efficient with a fuel utilization efficiency of 90% compared to that of 30%.

ContributorsRupiper, Lauren Nicole (Author) / Milcarek, Ryan (Thesis director) / Wang, Liping (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152303-Thumbnail Image.png
Description
Purpose: To examine: (1) whether Non-Hispanic Blacks (NHB) and Non-Hispanic Whites (NHW) with diagnosed arthritis differed in self-reported physical activity (PA) levels, (2) if NHB and NHW with arthritis differed on potential correlates of PA based on the Social Ecological Model (Mcleroy et al., 1988), and (3) if PA participation

Purpose: To examine: (1) whether Non-Hispanic Blacks (NHB) and Non-Hispanic Whites (NHW) with diagnosed arthritis differed in self-reported physical activity (PA) levels, (2) if NHB and NHW with arthritis differed on potential correlates of PA based on the Social Ecological Model (Mcleroy et al., 1988), and (3) if PA participation varied by race/ethnicity after controlling for age, gender, education, and BMI. Methods: This study was a secondary data analysis of data collected from 2006-2008 in Chicago, IL as part of the Midwest Roybal Center for Health Promotion. Bivariate analyses were used to assess potential differences between race in meeting either ACR or ACSM PA guidelines. Comparisons by race between potential socio-demographic correlates and meeting physical activity guidelines were assessed using Chi-squares. Potential differences by race in psychosocial, arthritis, and health-related and environmental correlates were assessed using T-tests. Finally, logistic regression analyses were used to examine if race was still associated with PA after controlling for socio-demographic characteristics. Results: A greater proportion of NHW (68.1% and 35.3%) than NHB (46.5% and 20.9%) met both the arthritis-specific and the American College of Sports Medicine (ACSM) recommendations for physical activity, respectively. NHB had significantly lower self-efficacy for exercise and reported greater impairments in physical function compared to NHW. Likewise, NHB reported more crime and less aesthetics within their neighborhood. NHW were 2.56 times more likely to meet arthritis-specific PA guidelines than NHB after controlling for age, gender, education, marital status, and BMI. In contrast, after controlling for sociodemographic characteristics, age and gender were the only significant predictors of meeting ACSM PA guidelines. Discussion: There were significant differences between NHB and NHW individuals with arthritis in meeting PA guidelines. After controlling for age, gender, education, and BMI non-Hispanic White individuals were still significantly more likely to meet PA guidelines. Interventions aimed at promoting higher levels of physical activity among individuals with arthritis need to consider neighborhood aesthetics and crime when designing programs. More arthritis-specific programs are needed in close proximity to neighborhoods in an effort to promote physical activity.
ContributorsChuran, Christopher (Author) / Der Ananian, Cheryl (Thesis advisor) / Adams, Marc (Committee member) / Campbell, Kathryn (Committee member) / Arizona State University (Publisher)
Created2013
152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152223-Thumbnail Image.png
Description
Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has

Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has been done in the ALT area and optimal design for ALT is a major topic. This dissertation consists of three main studies. First, a methodology of finding optimal design for ALT with right censoring and interval censoring have been developed and it employs the proportional hazard (PH) model and generalized linear model (GLM) to simplify the computational process. A sensitivity study is also given to show the effects brought by parameters to the designs. Second, an extended version of I-optimal design for ALT is discussed and then a dual-objective design criterion is defined and showed with several examples. Also in order to evaluate different candidate designs, several graphical tools are developed. Finally, when there are more than one models available, different model checking designs are discussed.
ContributorsYang, Tao (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Borror, Connie (Committee member) / Rigdon, Steve (Committee member) / Arizona State University (Publisher)
Created2013
151329-Thumbnail Image.png
Description
During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments help reduce the large number of factors to a smaller set.

During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments help reduce the large number of factors to a smaller set. The 16 run regular fractional factorial designs for six, seven and eight factors are in common usage. These designs allow clear estimation of all main effects when the three-factor and higher order interactions are negligible, but all two-factor interactions are aliased with each other making estimation of these effects problematic without additional runs. Alternatively, certain nonregular designs called no-confounding (NC) designs by Jones and Montgomery (Jones & Montgomery, Alternatives to resolution IV screening designs in 16 runs, 2010) partially confound the main effects with the two-factor interactions but do not completely confound any two-factor interactions with each other. The NC designs are useful for independently estimating main effects and two-factor interactions without additional runs. While several methods have been suggested for the analysis of data from nonregular designs, stepwise regression is familiar to practitioners, available in commercial software, and is widely used in practice. Given that an NC design has been run, the performance of stepwise regression for model selection is unknown. In this dissertation I present a comprehensive simulation study evaluating stepwise regression for analyzing both regular fractional factorial and NC designs. Next, the projection properties of the six, seven and eight factor NC designs are studied. Studying the projection properties of these designs allows the development of analysis methods to analyze these designs. Lastly the designs and projection properties of 9 to 14 factor NC designs onto three and four factors are presented. Certain recommendations are made on analysis methods for these designs as well.
ContributorsShinde, Shilpa (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Committee member) / Fowler, John (Committee member) / Jones, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
152382-Thumbnail Image.png
Description
A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error standard deviation of the model. In our proposed approach, P-values

A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error standard deviation of the model. In our proposed approach, P-values are computed at each level within a sample. If at least one of the P-values is less than a pre-specified significance level, the chart signals out-of-control. The primary advantage of our approach is that only one control chart is required to monitor several parameters simultaneously: the intercept, slope(s), and the error standard deviation. A comprehensive comparison of the proposed method and the existing KMW-Shewhart method for monitoring linear profiles is conducted. In addition, the effect that the number of observations within a sample has on the performance of the proposed method is investigated. The proposed method was also compared to the T^2 method discussed in Kang and Albin (2000) for multivariate, polynomial, and nonlinear profiles. A simulation study shows that overall the proposed P-value method performs satisfactorily for different profile types.
ContributorsAdibi, Azadeh (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Thesis advisor) / Li, Jing (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2013
150466-Thumbnail Image.png
Description
The ever-changing economic landscape has forced many companies to re-examine their supply chains. Global resourcing and outsourcing of processes has been a strategy many organizations have adopted to reduce cost and to increase their global footprint. This has, however, resulted in increased process complexity and reduced customer satisfaction. In order

The ever-changing economic landscape has forced many companies to re-examine their supply chains. Global resourcing and outsourcing of processes has been a strategy many organizations have adopted to reduce cost and to increase their global footprint. This has, however, resulted in increased process complexity and reduced customer satisfaction. In order to meet and exceed customer expectations, many companies are forced to improve quality and on-time delivery, and have looked towards Lean Six Sigma as an approach to enable process improvement. The Lean Six Sigma literature is rich in deployment strategies; however, there is a general lack of a mathematical approach to deploy Lean Six Sigma in a global enterprise. This includes both project identification and prioritization. The research presented here is two-fold. Firstly, a process characterization framework is presented to evaluate processes based on eight characteristics. An unsupervised learning technique, using clustering algorithms, is then utilized to group processes that are Lean Six Sigma conducive. The approach helps Lean Six Sigma deployment champions to identify key areas within the business to focus a Lean Six Sigma deployment. A case study is presented and 33% of the processes were found to be Lean Six Sigma conducive. Secondly, having identified parts of the business that are lean Six Sigma conducive, the next steps are to formulate and prioritize a portfolio of projects. Very often the deployment champion is faced with the decision of selecting a portfolio of Lean Six Sigma projects that meet multiple objectives which could include: maximizing productivity, customer satisfaction or return on investment, while meeting certain budgetary constraints. A multi-period 0-1 knapsack problem is presented that maximizes the expected net savings of the Lean Six Sigma portfolio over the life cycle of the deployment. Finally, a case study is presented that demonstrates the application of the model in a large multinational company. Traditionally, Lean Six Sigma found its roots in manufacturing. The research presented in this dissertation also emphasizes the applicability of the methodology to the non-manufacturing space. Additionally, a comparison is conducted between manufacturing and non-manufacturing processes to highlight the challenges in deploying the methodology in both spaces.
ContributorsDuarte, Brett Marc (Author) / Fowler, John W (Thesis advisor) / Montgomery, Douglas C. (Thesis advisor) / Shunk, Dan (Committee member) / Borror, Connie (Committee member) / Konopka, John (Committee member) / Arizona State University (Publisher)
Created2011
151203-Thumbnail Image.png
Description
This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers

This dissertation presents methods for the evaluation of ocular surface protection during natural blink function. The evaluation of ocular surface protection is especially important in the diagnosis of dry eye and the evaluation of dry eye severity in clinical trials. Dry eye is a highly prevalent disease affecting vast numbers (between 11% and 22%) of an aging population. There is only one approved therapy with limited efficacy, which results in a huge unmet need. The reason so few drugs have reached approval is a lack of a recognized therapeutic pathway with reproducible endpoints. While the interplay between blink function and ocular surface protection has long been recognized, all currently used evaluation techniques have addressed blink function in isolation from tear film stability, the gold standard of which is Tear Film Break-Up Time (TFBUT). In the first part of this research a manual technique of calculating ocular surface protection during natural blink function through the use of video analysis is developed and evaluated for it's ability to differentiate between dry eye and normal subjects, the results are compared with that of TFBUT. In the second part of this research the technique is improved in precision and automated through the use of video analysis algorithms. This software, called the OPI 2.0 System, is evaluated for accuracy and precision, and comparisons are made between the OPI 2.0 System and other currently recognized dry eye diagnostic techniques (e.g. TFBUT). In the third part of this research the OPI 2.0 System is deployed for use in the evaluation of subjects before, immediately after and 30 minutes after exposure to a controlled adverse environment (CAE), once again the results are compared and contrasted against commonly used dry eye endpoints. The results demonstrate that the evaluation of ocular surface protection using the OPI 2.0 System offers superior accuracy to the current standard, TFBUT.
ContributorsAbelson, Richard (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Committee member) / Shunk, Dan (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
148412-Thumbnail Image.png
Description

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal

This work summarizes the development of a dynamic measurement platform in a cryostat to measure sample temperature response to space-like conditions and the creation a MATLAB theoretical model to predict sample temperature responses in the platform itself. An interesting variable-emittance sample called a Fabry-Perot emitter was studied for its thermal homeostasis behavior using the two developments. Using the measurement platform, it was shown that there was no thermal homeostatic behavior demonstrated by the sample at steady state temperatures. Theoretical calculations show other ways to demonstrate the cooling homeostasis behavior through time-varying heat inputs. Factors within the system such as heat loss and thermal mass contributed to an inhibited sample performance in the platform. Future work will have to be conducted, not only to verify the findings of the initial experiments but also to improve the measurement platform and the theoretical model.

ContributorsBoman, Neal D (Author) / Wang, Liping (Thesis director) / Taylor, Syndey (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05