Matching Items (132)
Filtering by

Clear all filters

135360-Thumbnail Image.png
Description
Aberrant glycosylation has been shown to be linked to specific cancers, and using this idea, it was proposed that the levels of glycans in the blood could predict stage I adenocarcinoma. To track this glycosylation, glycan were broken down into glycan nodes via methylation analysis. This analysis utilized information from

Aberrant glycosylation has been shown to be linked to specific cancers, and using this idea, it was proposed that the levels of glycans in the blood could predict stage I adenocarcinoma. To track this glycosylation, glycan were broken down into glycan nodes via methylation analysis. This analysis utilized information from N-, O-, and lipid linked glycans detected from gas chromatography-mass spectrometry. The resulting glycan node-ratios represent the initial quantitative data that were used in this experiment.
For this experiment, two Sets of 50 µl blood plasma samples were provided by NYU Medical School. These samples were then analyzed by Dr. Borges’s lab so that they contained normalized biomarker levels from patients with stage 1 adenocarcinoma and control patients with matched age, smoking status, and gender were examined. An ROC curve was constructed under individual and paired conditions and AUC calculated in Wolfram Mathematica 10.2. Methods such as increasing size of training set, using hard vs. soft margins, and processing biomarkers together and individually were used in order to increase the AUC. Using a soft margin for this particular data set was proved to be most useful compared to the initial set hard margin, raising the AUC from 0.6013 to 0.6585. In regards to which biomarkers yielded the better value, 6-Glc/6-Man and 3,6-Gal glycan node ratios had the best with 0.7687 AUC and a sensitivity of .7684 and specificity of .6051. While this is not enough accuracy to become a primary diagnostic tool for diagnosing stage I adenocarcinoma, the methods examined in the paper should be evaluated further. . By comparison, the current clinical standard blood test for prostate cancer that has an AUC of only 0.67.
ContributorsDe Jesus, Celine Spicer (Author) / Taylor, Thomas (Thesis director) / Borges, Chad (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134770-Thumbnail Image.png
Description
Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including

Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including high false positive rates, low throughput, and lack of quantification. Moreover, most methods are not compatible for use in a clinical setting. To address these limitations, we have developed a multiplexed, in-solution protein microarray (MISPA) platform with broad applications in proteomics. MISPA can be used to quantitatively profile PPIs and as a robust technology for early detection of cancers. This method utilizes unique DNA barcoding of individual proteins coupled with next generation sequencing to quantitatively assess interactions via barcode enrichment. We have tested the feasibility of this technology in the detection of patient immune responses to oropharyngeal carcinomas and in the discovery of novel PPIs in the B-cell receptor (BCR) pathway. To achieve this goal, 96 human papillomavirus (HPV) antigen genes were cloned into pJFT7-cHalo (99% success) and pJFT7-n3xFlag-Halo (100% success) expression vectors. These libraries were expressed via a cell-free in vitro transcription-translation system with 93% and 96% success, respectively. A small-scale study of patient serum interactions with barcoded HPV16 antigens was performed and a HPV proteome-wide study will follow using additional patient samples. In addition, 15 query proteins were cloned into pJFT7_nGST expression vectors, expressed, and purified with 93% success to probe a library of 100 BCR pathway proteins and detect novel PPIs.
ContributorsRinaldi, Capria Lakshmi (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
161566-Thumbnail Image.png
Description
Objective: Increasing fruit/vegetable (FV) consumption and decreasing waste during the school lunch is a public health priority. Understanding how serving style of FV impacts FV consumption and waste may be an effective means to changing nutrition behaviors in schools. This study examined whether students were more likely to select, consume,

Objective: Increasing fruit/vegetable (FV) consumption and decreasing waste during the school lunch is a public health priority. Understanding how serving style of FV impacts FV consumption and waste may be an effective means to changing nutrition behaviors in schools. This study examined whether students were more likely to select, consume, and waste FV when FVs were cut vs. whole. Methods: Baseline data from the ASU School Lunch Study was used to explore associations between cut vs. whole FV serving style and objectively measured FV selection, consumption, and waste and grade level interactions among a random selection of students (n=6804; 47.8% female; 78.8% BIPOC) attending Arizona elementary, middle, and high schools (N=37). Negative binomial regression models evaluated serving style on FV weight (grams) selected, consumed, and wasted, adjusted for sociodemographics and school. Results: Students were more likely to select cut FVs (IRR=1.11; 95% CI: 1.04, 1.18) and waste cut FVs (IRR=1.20; 95% CI: 1.04, 1.39); however, no differences were observed in the overall consumption of cut vs. whole FVs. Grade-level interactions impacted students’ selection of FVs. Middle school students had a significantly higher effect modification for the selection of cut FVs (IRR=1.18; p=0.006) compared to high school and elementary students. Further, high school students had a significantly lower effect modification for the selection of cut FVs (IRR=0.83; p=0.010) compared to middle and elementary students. No other grade-level interactions were observed. Discussion: Serving style of FV may impact how much FV is selected and wasted, but further research is needed to determine causality between these variables.
ContributorsJames, Amber Chandarana (Author) / Bruening, Meredith (Thesis advisor) / Adams, Marc (Thesis advisor) / Koskan, Alexis (Committee member) / Arizona State University (Publisher)
Created2021
168413-Thumbnail Image.png
Description
Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size

Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size has been widely studied throughout the years. It has been shown that size-heterogeneity in organelles has been linked to multiple diseases from abnormal organelle size. Here, a mixture of two sizes of polystyrene beads (0.28 and 0.87 μm) was separated by a ratchet migration mechanism under a continuous flow (20 nL/min). Furthermore, to achieve high-throughput separation, different ratchet devices were designed to achieve high-volume separation. Recently, enormous efforts have been made to manipulate small size DNA and proteins. Here, a microfluidic device comprising of multiple valves acting as insulating constrictions when a potential is applied is presented. The tunability of the electric field gradient is evaluated by a COMSOL model, indicating that high electric field gradients can be reached by deflecting the valve at a certain distance. Experimentally, the tunability of the dynamic constriction was demonstrated by conducting a pressure study to estimate the gap distance between the valve and the substrate at different applied pressures. Finally, as a proof of principle, 0.87 μm polystyrene beads were manipulated by dielectrophoresis. These microfluidic platforms will aid in the understanding of size-heterogeneity of organelles for biomolecular assessment and achieve separation of nanometer-size DNA and proteins by dielectrophoresis.
ContributorsOrtiz, Ricardo (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2021
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021
Description

In cold chain tracking systems, accuracy and flexibility across different temperatures ranges plays an integral role in monitoring biospecimen integrity. However, while two common cold chain tracking systems are currently available (electronic and physics/chemical), there is not an affordable cold chain tracking mechanism that can be applied to a variety

In cold chain tracking systems, accuracy and flexibility across different temperatures ranges plays an integral role in monitoring biospecimen integrity. However, while two common cold chain tracking systems are currently available (electronic and physics/chemical), there is not an affordable cold chain tracking mechanism that can be applied to a variety of temperatures while maintaining accuracy for individual vials. Hence, our lab implemented our understanding of biochemical reaction kinetics to develop a new cold chain tracking mechanism using the permanganate/oxalic acid reaction. The permanganate/oxalic acid reaction is characterized by the reduction of permanganate (MnVII) to Mn(II) with Mn(II)-autocatalyzed oxidation of oxalate to CO2, resulting in a pink to colorless visual indicator change when the reaction system is not in the solid state (i.e., frozen or vitrified). Throughout our research, we demonstrate, (i) Improved reaction consistency and accuracy along with extended run times with the implementation of a nitric acid-based labware washing protocol, (ii) Simulated reaction kinetics for the maximum length reaction and 60-minute reaction based on previously developed MATLAB scripts (iii) Experimental reaction kinetics to verify the simulated MATLAB maximum and 60-minute reactions times (iv) Long-term stability of the permanganate/oxalic acid reaction with water or eutectic solutions of sodium perchlorate and magnesium perchlorate at -80°C (v) Reaction kinetics with eutectic solvents, sodium perchlorate and magnesium perchlorate, at 25°C, 4°C, and -8°C (vi) Accelerated reaction kinetics after the addition of varying concentrations of manganese perchlorate (vii) Reaction kinetics of higher concentration reaction systems (5x and 10x; for darker colors), at 25°C (viii) Long-term stability of the 10x higher concentration reaction at -80°C.

ContributorsLjungberg, Emil (Author) / Borges, Chad (Thesis director) / Levitus, Marcia (Committee member) / Williams, Peter (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-12
171514-Thumbnail Image.png
Description
Plasma and serum are the most commonly used liquid biospecimens in biomarker research. These samples may be subjected to several pre-analytical variables (PAVs) during collection, processing and storage. Exposure to thawed conditions (temperatures above -30 °C) is a PAV that is hard to control, and track and could provide misleading

Plasma and serum are the most commonly used liquid biospecimens in biomarker research. These samples may be subjected to several pre-analytical variables (PAVs) during collection, processing and storage. Exposure to thawed conditions (temperatures above -30 °C) is a PAV that is hard to control, and track and could provide misleading information, that fail to accurately reveal the in vivo biological reality, when unaccounted for. Hence, assays that can empirically check the integrity of plasma and serum samples are crucial. As a solution to this issue, an assay titled ΔS-Cys-Albumin was developed and validated. The reference range of ΔS-Cys-Albumin in cardio vascular patients was determined and the change in ΔS-Cys-Albumin values in different samples over time course incubations at room temperature, 4 °C and -20 °C were evaluated. In blind challenges, this assay proved to be successful in identifying improperly stored samples individually and as groups. Then, the correlation between the instability of several clinically important proteins in plasma from healthy and cancer patients at room temperature, 4 °C and -20 °C was assessed. Results showed a linear inverse relationship between the percentage of proteins destabilized and ΔS-Cys-Albumin regardless of the specific time or temperature of exposure, proving ΔS-Cys-Albumin as an effective surrogate marker to track the stability of clinically relevant analytes in plasma. The stability of oxidized LDL in serum at different temperatures was assessed in serum samples and it stayed stable at all temperatures evaluated. The ΔS-Cys-Albumin requires the use of an LC-ESI-MS instrument which limits its availability to most clinical research laboratories. To overcome this hurdle, an absorbance-based assay that can be measured using a plate reader was developed as an alternative to the ΔS-Cys-Albumin assay. Assay development and analytical validation procedures are reported herein. After that, the range of absorbance in plasma and serum from control and cancer patients were determined and the change in absorbance over a time course incubation at room temperature, 4 °C and -20 °C was assessed. The results showed that the absorbance assay would act as a good alternative to the ΔS-Cys-Albumin assay.
ContributorsJehanathan, Nilojan (Author) / Borges, Chad (Thesis advisor) / Guo, Jia (Committee member) / Van Horn, Wade (Committee member) / Arizona State University (Publisher)
Created2022
187871-Thumbnail Image.png
Description
Trace evidence is an essential component of forensic investigations. Anthropogenicmaterials such as fibers and glass have been well studied for use in forensic trace evidence, but the potential use of retroreflective beads found in soils for forensic investigations is largely unexplored. Retroreflective glass beads are tiny spheres mixed into pavement

Trace evidence is an essential component of forensic investigations. Anthropogenicmaterials such as fibers and glass have been well studied for use in forensic trace evidence, but the potential use of retroreflective beads found in soils for forensic investigations is largely unexplored. Retroreflective glass beads are tiny spheres mixed into pavement markings to create reflective surfaces to reduce lane departure accidents. Retroreflective glass beads are a potentially new source of trace evidence for forensic investigations. Analysis of the spatial distribution and chemical compositions of retroreflective glass beads recovered from 17 soil samples were analyzed and compared to see if there are striking variations that can distinguish samples by source. Soil samples taken near marked roads showed significantly higher concentrations of glass beads, averaging from 0.18 bead/g of soil sample to 587 beads/g of soil, while soil samples taken near unmarked roads had average range of concentration of 0 bead/g of soil to 0.21 bead/g of soil. Retroreflective glass beads come from pavement markings, thus soil samples near marked roads are expected to have higher concentrations of glass beads. Analysis of spatial distribution of glass beads showed that as sample collection moved further from the road, concentration of glass beads decreased. ICP-MS results of elemental concentrations for each sample showed discriminative differences between samples, for most of the elements. An analysis of variance for elemental concentrations was conducted, and results showed statistically significant differences, beyond random chance alone for half of the elements analyzed. For forensic comparisons, a significant difference in even just one element is enough to conclude that the samples came from different sources. The elemental concentrations of glass beads collected from the same location, but of varying differences, was also analyzed. ANOVA results show significant differences for only one or two elements. A pair-wise t-test was conducted to determine which elements are most discriminative among all the samples. Rubidium was found to be the most discriminative, showing significant difference for 67% of the pairs. Beryllium, potassium, and manganese were also highly discriminative, showing significant difference for at least 50% of all the pairs.
ContributorsGomez, Janelle Kate Pacifico (Author) / Montero, Shirly (Thesis advisor) / Herckes, Pierre (Thesis advisor) / Borges, Chad (Committee member) / Gordon, Gwyneth (Committee member) / Arizona State University (Publisher)
Created2023
Description
Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and

Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and associated stigma in the context of the parent-child relationship. This cross-sectional study examined self-reported weight stigma experience and internalization within 42 parent/adolescent dyads to provide greater understanding of how adolescents and parents are experiencing and internalizing weight stigma independently and transversely.
ContributorsMillett, Emma (Author) / McEntee, Mindy (Thesis director) / Adams, Marc (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-12
171311-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as

Type 1 diabetes (T1D) is the result of an autoimmune attack against the insulin-producing β-cells of the pancreas causing hyperglycemia and requiring the individual to rely on life-long exogenous insulin. With the age of onset typically occurring in childhood, there is increased physical and emotional stress to the child as well as caregivers to maintain appropriate glucose levels. The majority of T1D patients have antibodies to one or more antigens: insulin, IA-2, GAD65, and ZnT8. Although antibodies are detectable years before symptoms occur, the initiating factors and mechanisms of progression towards β-cell destruction are still not known. The search for new autoantibodies to elucidate the autoimmune process in diabetes has been slow, with proteome level screenings on native proteins only finding a few minor antigens. Post-translational modifications (PTM)—chemical changes that occur to the protein after translation is complete—are an unexplored way a self-protein could become immunogenic. This dissertation presents the first large sale screening of autoantibodies in T1D to nitrated proteins. The Contra Capture Protein Array (CCPA) allowed for fresh expression of hundreds of proteins that were captured on a secondary slide by tag-specific ligand and subsequent modification with peroxynitrite. The IgG and IgM humoral response of 48 newly diagnosed T1D subjects and 48 age-matched controls were screened against 1632 proteins highly or specifically expressed in pancreatic cells. Top targets at 95% specificity were confirmed with the same serum samples using rapid antigenic protein in situ display enzyme-linked immunosorbent assay (RAPID ELISA) a modified sandwich ELISA employing the same cell-free expression as the CCPA. For validation, 8 IgG and 5 IgM targets were evaluated with an independent serum sample set of 94 T1D subjects and 94 controls. The two best candidates at 90% specificity were estrogen receptor 1 (ESR1) and phosphatidylinositol 4-kinase type 2 beta (PI4K2B) which had sensitivities of 22% (p=.014) and 25% (p=.045), respectively. Receiver operating characteristic (ROC) analyses found an area under curve (AUC) of 0.6 for ESR1 and 0.58 for PI4K2B. These studies demonstrate the ability and value for high-throughput autoantibody screening to modified antigens and the frequency of Type 1 diabetes.
ContributorsHesterman, Jennifer (Author) / LaBaer, Joshua (Thesis advisor) / Borges, Chad (Committee member) / Sweazea, Karen (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022