Matching Items (94)
Description

With the increase in the severity of drought conditions in the Southwest region of the U.S. paired with rising temperatures, it is becoming increasingly important to look at the systems used to keep people cool in hot-arid cities like Tempe, Arizona. Outdoor misting systems are often deployed by businesses. These

With the increase in the severity of drought conditions in the Southwest region of the U.S. paired with rising temperatures, it is becoming increasingly important to look at the systems used to keep people cool in hot-arid cities like Tempe, Arizona. Outdoor misting systems are often deployed by businesses. These systems rely on the evaporative cooling effect of water. This study examines the relationship between misting droplet size, water usage, and thermal comfort using low-pressure misting systems, tested within hot and dry conditions representative of the arid U.S. southwest. A model misting system using three nozzle orifice sizes was set up in a controlled heat chamber environment (starting baseline conditions of 40°C air temperature and 15 % relative humidity). Droplet size was measured using water-reactive paper, while water use was determined based on weight-change measurements. These measurements were paired with temperature and humidity measurements observed in several locations around the chamber to allow for a spatial analysis. Thermal comfort is determined based on psychrometric changes (temperature and absolute humidity) within the room. On average, air temperatures decreased between 2 to 4°C depending on nozzle size and sensor location. The 0.4 mm nozzle had a decent spread across the heat chamber and balanced water usage and effectiveness well. Limitations within the study showed ventilation is important for an effective system, corroborating other studies findings and suggesting that adding air circulation could improve evaporation and comfort and thus effectiveness. Finally, visual cues, such as wetted surfaces, can signal businesses to change nozzle sizes and/or make additional modifications to the system area.

ContributorsJohnson, Trevor (Author) / Vanos, Jennifer (Thesis director) / Middel, Ariane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
187723-Thumbnail Image.png
Description
Tools designed to help match people with behaviors they identify as likely to lead to a successful behavioral outcome remain under-researched. This study assessed the effect of a participant-driven behavior-matching intervention on 1) the adoption of a new behavior related to fruit and vegetable (F&V) consumption, 2) study attrition, and

Tools designed to help match people with behaviors they identify as likely to lead to a successful behavioral outcome remain under-researched. This study assessed the effect of a participant-driven behavior-matching intervention on 1) the adoption of a new behavior related to fruit and vegetable (F&V) consumption, 2) study attrition, and 3) changes in F&V consumption. In this two-arm randomized controlled trial, 64 adults who did not meet standard F&V recommendations were allocated to an intervention (n=33) or control group (n=31). Participants in the intervention group ranked 20 F&V-related behaviors according to their perceived likelihood of engagement in the behavior and their perception of the behavior’s efficacy in increasing F&V consumption. Participants in the intervention group were subsequently shown the list of 20 behaviors in order of their provided rankings, with the highest-ranked behaviors at the top, and were asked to choose a behavior they would like to perform daily for 4 weeks. The control group chose from a random-order list of the same 20 behaviors to adopt daily for 4 weeks. During the study period, text messages were sent to all participants 90 minutes before their reported bedtime to collect Yes/No data reflecting successful behavior engagement each day. The binary repeated-measures data collected from the text messages was analyzed using mixed-effects logistic regression, differences in attrition were assessed using log-rank analysis, and change scores in F&V consumption were compared between the two groups using the Man-Whitney U test. P<0.05 indicated significance. The rate of successful behavior adoption did not differ significantly between the two groups (b=0.09, 95%CI= -0.81, 0.98, p=0.85). The log rank test results indicated that there was no significant difference in attrition between the two groups (χ2=2.68, df=1, p=0.10). F&V consumption increased significantly over the 4 weeks in the total sample (Z=-5.86, p<0.001), but no differences in F&V change scores were identified between the control and intervention groups (Z=-0.21, p=0.84). The behavior-matching tool assessed in this study did not significantly improve behavior adoption, study attrition, or F&V intake over 4 weeks.
ContributorsCosgrove, Kelly Sarah (Author) / Wharton, Christopher (Thesis advisor) / Adams, Marc (Committee member) / DesRoches, Tyler (Committee member) / Grebitus, Carola (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2023
193043-Thumbnail Image.png
Description
The measurement of the radiation and convection that the human body experiences are important for ensuring safety in extreme heat conditions. The radiation from the surroundings on the human body is most often measured using globe or cylindrical radiometers. The large errors stemming from differences in internal and exterior temperatures

The measurement of the radiation and convection that the human body experiences are important for ensuring safety in extreme heat conditions. The radiation from the surroundings on the human body is most often measured using globe or cylindrical radiometers. The large errors stemming from differences in internal and exterior temperatures and indirect estimation of convection can be resolved by simultaneously using three cylindrical radiometers (1 cm diameter, 9 cm height) with varying surface properties and internal heating. With three surface balances, the three unknowns (heat transfer coefficient, shortwave, and longwave radiation) can be solved for directly. As compared to integral radiation measurement technique, however, the bottom mounting using a wooden-dowel of the three-cylinder radiometers resulted in underestimated the total absorbed radiation. This first part of this thesis focuses on reducing the size of the three-cylinder radiometers and an alternative mounting that resolves the prior issues. In particular, the heat transfer coefficient in laminar wind tunnel with wind speed of 0.25 to 5 m/s is measured for six polished, heated cylinders with diameter of 1 cm and height of 1.5 to 9 cm mounted using a wooden dowel. For cylinders with height of 6 cm and above, the heat transfer coefficients are independent of the height and agree with the Hilpert correlation for infinitely long cylinder. Subsequently, a side-mounting for heated 6 cm tall cylinder with top and bottom metallic caps is developed and tested within the wind tunnel. The heat transfer coefficient is shown to be independent of the flow-side mounting and in agreement with the Hilpert correlation. The second part of this thesis explores feasibility of employing the three-cylinder concept to measuring all air-flow parameters relevant to human convection including mean wind speed, turbulence intensity and length scale. Heated cylinders with same surface properties but varying diameters are fabricated. Uniformity of their exterior temperature, which is fundamental to the three-cylinder anemometer concept, is tested during operation using infrared camera. To provide a lab-based method to measure convection from the cylinders in turbulent flow, several designs of turbulence-generating fractal grids are laser-cut and introduced into the wind tunnel.
ContributorsGupta, Mahima (Author) / Rykaczewski, Konrad (Thesis advisor) / Pathikonda, Gokul (Thesis advisor) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2024
156599-Thumbnail Image.png
Description
The global increase in urbanization has raised questions about urban sustainability to which multiple research communities have entered. Those communities addressing interest in the urban heat island (UHI) effect and extreme temperatures include land system science, urban/landscape ecology, and urban climatology. General investigations of UHI have focused primarily on land

The global increase in urbanization has raised questions about urban sustainability to which multiple research communities have entered. Those communities addressing interest in the urban heat island (UHI) effect and extreme temperatures include land system science, urban/landscape ecology, and urban climatology. General investigations of UHI have focused primarily on land surface and canopy layer air temperatures. The surface temperature is of prime importance to UHI studies because of its central rule in the surface energy balance, direct effects on air temperature, and outdoor thermal comfort. Focusing on the diurnal surface temperature variations in Phoenix, Arizona, especially on the cool (green space) island effect and the surface heat island effect, the dissertation develops three research papers that improve the integration among the abovementioned sub-fields. Specifically, these papers involve: (1) the quantification and modeling of the diurnal cooling benefits of green space; (2) the optimization of green space locations to reduce the surface heat island effect in daytime and nighttime; and, (3) an evaluation of the effects of vertical urban forms on land surface temperature using Google Street View. These works demonstrate that the pattern of new green spaces in central Phoenix could be optimized such that 96% of the maximum daytime and nighttime cooling benefits would be achieved, and that Google Street View data offers an alternative to other data, providing the vertical dimensions of land-cover for addressing surface temperature impacts, increasing the model accuracy over the use of horizontal land-cover data alone. Taken together, the dissertation points the way towards the integration of research directions to better understand the consequences of detailed land conditions on temperatures in urban areas, providing insights for urban designs to alleviate these extremes.
ContributorsZhang, Yujia (Author) / Turner, Billie (Thesis advisor) / Murray, Alan T. (Committee member) / Myint, Soe W (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2018
156637-Thumbnail Image.png
Description
Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied

Earth-system models describe the interacting components of the climate system and

technological systems that affect society, such as communication infrastructures. Data

assimilation addresses the challenge of state specification by incorporating system

observations into the model estimates. In this research, a particular data

assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is

applied to the ionosphere, which is a domain of practical interest due to its effects

on infrastructures that depend on satellite communication and remote sensing. This

dissertation consists of three main studies that propose strategies to improve space-

weather specification during ionospheric extreme events, but are generally applicable

to Earth-system models:

Topic I applies the LETKF to estimate ion density with an idealized model of

the ionosphere, given noisy synthetic observations of varying sparsity. Results show

that the LETKF yields accurate estimates of the ion density field and unobserved

components of neutral winds even when the observation density is spatially sparse

(2% of grid points) and there is large levels (40%) of Gaussian observation noise.

Topic II proposes a targeted observing strategy for data assimilation, which uses

the influence matrix diagnostic to target errors in chosen state variables. This

strategy is applied in observing system experiments, in which synthetic electron density

observations are assimilated with the LETKF into the Thermosphere-Ionosphere-

Electrodynamics Global Circulation Model (TIEGCM) during a geomagnetic storm.

Results show that assimilating targeted electron density observations yields on

average about 60%–80% reduction in electron density error within a 600 km radius of

the observed location, compared to 15% reduction obtained with randomly placed

vertical profiles.

Topic III proposes a methodology to account for systematic model bias arising

ifrom errors in parametrized solar and magnetospheric inputs. This strategy is ap-

plied with the TIEGCM during a geomagnetic storm, and is used to estimate the

spatiotemporal variations of bias in electron density predictions during the

transitionary phases of the geomagnetic storm. Results show that this strategy reduces

error in 1-hour predictions of electron density by about 35% and 30% in polar regions

during the main and relaxation phases of the geomagnetic storm, respectively.
ContributorsDurazo, Juan, Ph.D (Author) / Kostelich, Eric J. (Thesis advisor) / Mahalov, Alex (Thesis advisor) / Tang, Wenbo (Committee member) / Moustaoui, Mohamed (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2018
157241-Thumbnail Image.png
Description
Objective: It’s not well understood how youth perceive existing fruit and vegetable (FV) marketing materials available in schools. This ancillary study sought to assess the acceptability of FV marketing materials freely available to schools among adolescents in grades 6-12.

Methods: Middle and high school adolescents (n=40; 50% female; 52.5% Hispanic) in

Objective: It’s not well understood how youth perceive existing fruit and vegetable (FV) marketing materials available in schools. This ancillary study sought to assess the acceptability of FV marketing materials freely available to schools among adolescents in grades 6-12.

Methods: Middle and high school adolescents (n=40; 50% female; 52.5% Hispanic) in the Phoenix, AZ area were asked to rank marketing materials (n=35) from favorite to least favorite in four categories: table tents, medium posters, large posters and announcements. Favorites were determined by showing participants two items at a time and having them choose which they preferred; items were displayed to each adolescent in a random order. Adolescents participated in a 20-30 minute interview on their favorite items in each category based on acceptance/attractiveness, comprehension, relevance, motivation and uniqueness of the materials. A content analysis was performed on top rated marketing materials. Top rated marketing materials were determined by the number of times the advertisement was ranked first in its category.

Results: An analysis of the design features of the items indicated that most participants (84%) preferred marketing materials with more than 4 color groups. Participant preference of advertisement length and word count was varied. A total of 5 themes and 20 subthemes emerged when participants discussed their favorite FV advertisements. Themes included: likes (e.g., colors, length, FV shown), dislikes (e.g., length, FV shown), health information (e.g., vitamin shown), comprehension (e.g., doesn’t recognize FV), and social aspects (e.g., peer opinion). Peer opinion often influenced participant opinion on marketing materials. Participants often said peers wouldn’t like the advertisements shown: “…kids my age think that vegetables are not good, and they like food more than vegetables.” Fruits and vegetable pictured as well as the information in the marketing materials also influenced adolescent preference.

Conclusion: Students preferred advertisements with more color and strong visual aspects. Word count had minimal influence on their opinions of the marketing materials, while information mentioned and peer opinion did have a positive effect. Further research needs to be done to determine if there is a link between adolescent preferences on FV marketing materials and FV consumption habits.
ContributorsPisano, Sydney Alexis (Author) / Bruening, Meg (Thesis advisor) / Adams, Marc (Committee member) / Grgich, Traci (Committee member) / Arizona State University (Publisher)
Created2019
157548-Thumbnail Image.png
Description
Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more

Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more localized heat mitigation understanding. In addition, over-reliance on evidence from temperate regions is disconnected from the actualities of extreme bioclimatic dynamics found in HUDs. This dissertation is an integration of a series of studies that inform urban climate relationships specific to HUDs. This three-paper dissertation demonstrates heat mitigation aspirational goals from actualities, depicts local urban thermal drivers in Kuwait, and then tests morphological sensitivity of selected thermal modulation strategies in one neighborhood in Kuwait City.

The first paper is based on a systematic literature review where evidence from morphological mitigation strategies in HUDs were critically reviewed, synthesized and integrated. Metrics, measurements, and methods were extracted to examine the applicability of the different strategies, and a content synthesis identified the levels of strategy success. Collective challenges and uncertainties were interpreted to compare aspirational goals from actualities of morphological mitigation strategies.

The second paper unpacks the relationship of urban morphological attributes in influencing thermal conditions to assess latent magnitudes of heat amelioration strategies. Mindful of the challenges presented in the first study, a 92-day summer field-measurement campaign captured system dynamics of urban thermal stimuli within sub-diurnal phenomena. A composite data set of sub-hourly air temperature measurements with sub-meter morphological attributes was built, statistically analyzed, and modeled. Morphological mediation effects were found to vary hourly with different patterns under varying weather conditions in non-linear associations. Results suggest mitigation interventions be investigated and later tested on a site- use and time-use basis.

The third paper concludes with a simulation-based study to conform on the collective findings of the earlier studies. The microclimate model ENVI-met 4.4, combined with field measurements, was used to simulate the effect of rooftop shade-sails in cooling the near ground thermal environment. Results showed significant cooling effects and thus presented a novel shading approach that challenges orthodox mitigation strategies in HUDs.
ContributorsAlKhaled, Saud R A H (Author) / Coseo, Paul (Thesis advisor) / Brazel, Anthony (Thesis advisor) / Middel, Ariane (Committee member) / Cheng, Chingwen (Committee member) / Arizona State University (Publisher)
Created2019
156957-Thumbnail Image.png
Description
Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the

Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the focus is on flows in realistic urban geometry. Both deterministic and stochastic transport patterns are identified, as inertial Lagrangian coherent structures. For the deterministic case, the organizing structures are well defined and are extracted at different hours of a day to reveal the variability of coherent patterns. For the stochastic case, a random displacement model for fluid particles is formulated, and used to derive the governing equations for inertial particles to examine the change in organizing structures due to ``zeroth-order'' random noise. It is found that, (1) the Langevin equation for inertial particles can be reduced to a random displacement model; (2) using random noise based on inhomogeneous turbulence, whose diffusivity is derived from $k$-$\epsilon$ models, major coherent structures survive to organize local flow patterns and weaker structures are smoothed out due to random motion.

A study of three-dimensional Lagrangian coherent structures (LCS) near HKIA is then presented and related to previous developments of two-dimensional (2D) LCS analyses in detecting windshear experienced by landing aircraft. The LCS are contrasted among three independent models and against 2D coherent Doppler light detection and ranging (LIDAR) data. Addition of the velocity information perpendicular to the lidar scanning cone helps solidify flow structures inferred from previous studies; contrast among models reveals the intramodel variability; and comparison with flight data evaluates the performance among models in terms of Lagrangian analyses. It is found that, while the three models and the LIDAR do recover similar features of the windshear experienced by a landing aircraft (along the landing trajectory), their Lagrangian signatures over the entire domain are quite different - a portion of each numerical model captures certain features resembling those LCS extracted from independent 2D LIDAR analyses based on observations. Overall, it was found that the Weather Research and Forecast (WRF) model provides the best agreement with the LIDAR data.

Finally, the three-dimensional variational (3DVAR) data assimilation scheme in WRF is used to incorporate the LIDAR line of sight velocity observations into the WRF model forecast at HKIA. Using two different days as test cases, it is found that the LIDAR data can be successfully and consistently assimilated into WRF. Using the updated model forecast LCS are extracted along the LIDAR scanning cone and compare to onboard flight data. It is found that the LCS generated from the updated WRF forecasts are generally better correlated with the windshear experienced by landing aircraft as compared to the LIDAR extracted LCS alone, which suggests that such a data assimilation scheme could be used for the prediction of windshear events.
ContributorsKnutson, Brent (Author) / Tang, Wenbo (Thesis advisor) / Calhoun, Ronald (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2018
157288-Thumbnail Image.png
Description
College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional

College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional study was to determine whether sleep patterns and physical activity observed in college students (N= 52) 18-25 years old at Arizona State University influenced bone biomarkers, osteocalcin (OC) and N-terminal telopeptide of type 1 collagen (NTX-1) concentrations. Students completed various dietary and health history questionnaires including the International Physical Activity Questionnaire short form. Students wore an actigraphy watch for 7 consecutive nights to record sleep events including total sleep time, sleep onset latency and wake after sleep onset. Total sleep time had a significant, negative correlation with OC (r = -0.298, p-value =0.036) while sleep onset latency had a significant, positive correlation with NTX-1 serum concentration (r = 0.293, p-value = 0.037). Despite correlational findings, only sleep percent was found to be significant (beta coefficient = 0.271 p-value = 0.788) among all the sleep components assessed, after adjusting for gender, race, BMI and calcium intake in multivariate regression models. Physical activity alone was not associated with either bone biomarker. Physical activity*sleep onset latency interactions were significantly correlated with osteocalcin (r = 0.308, p-value =0.006) and NTX-1 (r = 0.286, p-value = 0.042) serum concentrations. Sleep percent*physical activity interactions were significantly correlated with osteocalcin (r = 0.280, p-value = 0.049) but not with NTX-1 serum concentrations. Interaction effects were no longer significant after adjusting for covariates in the regression models. While sleep percent was a significant component in the regression model for NTX-1, it was not clinically significant. Overall, sleep patterns and physical activity did not explain OC and NTX-1 serum concentrations in college students 18-25 years old. Future studies may need to consider objective physical activity devices including accelerometers to measure activity levels. At this time, college students should review sleep and physical activity recommendations to ensure optimal healthy habits are practiced.
ContributorsMahmood, Tara Nabil (Author) / Whisner, Corrie (Thesis advisor) / Dickinson, Jared (Committee member) / Petrov, Megan (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019
157086-Thumbnail Image.png
Description
Background In the United States (US), first-year university students typically live on campus and purchase a meal plan. In general, meal plans allow the student a set number of meals per week or semester, or unlimited meals. Understanding how students’ use their meal plan, and barriers and facilitators to meal

Background In the United States (US), first-year university students typically live on campus and purchase a meal plan. In general, meal plans allow the student a set number of meals per week or semester, or unlimited meals. Understanding how students’ use their meal plan, and barriers and facilitators to meal plan use, may help decrease nutrition-related issues.

Methods First-year students’ meal plan and residence information was provided by a large, public, southwestern university for the 2015-2016 academic year. A subset of students (n=619) self-reported their food security status. Logistic generalized estimating equations (GEEs) were used to determine if meal plan purchase and use were associated with food insecurity. Linear GEEs were used to examine several potential reasons for lower meal plan use. Logistic and Linear GEEs were used to determine similarities in meal plan purchase and use for a total of 599 roommate pairs (n=1186 students), and 557 floormates.

Results Students did not use all of the meals available to them; 7% of students did not use their meal plan for an entire month. After controlling for socioeconomic factors, compared to students on unlimited meal plans, students on the cheapest meal plan were more likely to report food insecurity (OR=2.2, 95% CI=1.2, 4.1). In Fall, 26% of students on unlimited meal plans reported food insecurity. Students on the 180 meals/semester meal plan who used fewer meals were more likely to report food insecurity (OR=0.9, 95% CI=0.8, 1.0); after gender stratification this was only evident for males. Students’ meal plan use was lower if the student worked a job (β=-1.3, 95% CI=-2.3, -0.3) and higher when their roommate used their meal plan frequently (β=0.09, 99% CI=0.04, 0.14). Roommates on the same meal plan (OR=1.56, 99% CI=1.28, 1.89) were more likely to use their meals together.

Discussion This study suggests that determining why students are not using their meal plan may be key to minimizing the prevalence of food insecurity on college campuses, and that strategic roommate assignments may result in students’ using their meal plan more frequently. Students’ meal plan information provides objective insights into students’ university transition.
Contributorsvan Woerden, Irene (Author) / Bruening, Meg (Thesis advisor) / Hruschka, Daniel (Committee member) / Schaefer, David (Committee member) / Vega-Lopez, Sonia (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019