Matching Items (350)
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
147838-Thumbnail Image.png
Description

Analyzing Incident Rates of COVID-19 Before and After Stay-At-Home Orders Throughout the Southwestern U.S. with Respect to Limited Mobility Models

ContributorsTilleman, Karl Benson (Author) / Albuquerque, Fabio Suzart de (Thesis director) / Powers, Brian (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147842-Thumbnail Image.png
Description

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer

Motor learning is the process of improving task execution according to some measure of performance. This can be divided into skill learning, a model-free process, and adaptation, a model-based process. Prior studies have indicated that adaptation results from two complementary learning systems with parallel organization. This report attempted to answer the question of whether a similar interaction leads to savings, a model-free process that is described as faster relearning when experiencing something familiar. This was tested in a two-week reaching task conducted on a robotic arm capable of perturbing movements. The task was designed so that the two sessions differed in their history of errors. By measuring the change in the learning rate, the savings was determined at various points. The results showed that the history of errors successfully modulated savings. Thus, this supports the notion that the two complementary systems interact to develop savings. Additionally, this report was part of a larger study that will explore the organizational structure of the complementary systems as well as the neural basis of this motor learning.

ContributorsRuta, Michael (Author) / Santello, Marco (Thesis director) / Blais, Chris (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147792-Thumbnail Image.png
Description

Mathematical and analytical approach at the floor and diffuser of a Formula 1 vehicle and how they produce downforce. Reaches a conclusion about how engineers and aerodynamicists creates the desired effects underneath the vehicle to produce substantial downforce.

ContributorsMarcantonio, Nicholas Joseph (Author) / Rajadas, John (Thesis director) / Hillery, Scott (Committee member) / College of Integrative Sciences and Arts (Contributor) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147807-Thumbnail Image.png
Description

Preeclampsia is a disease that occurs during pregnancy and affects upwards of 10% of pregnancies around the world (Osungbade & Ige, 2011). African American pregnant women are particularly vulnerable and die at a disproportionate rate compared to other races. In this literature review, three research studies were analyzed to determine

Preeclampsia is a disease that occurs during pregnancy and affects upwards of 10% of pregnancies around the world (Osungbade & Ige, 2011). African American pregnant women are particularly vulnerable and die at a disproportionate rate compared to other races. In this literature review, three research studies were analyzed to determine if African American pregnant women were included in preeclampsia Studies. Only one of the studies included in this review met all criteria by including African American pregnant women. One research study met half of the criteria; however, the authors noted that there was not enough evidence for Black Americans. The third research article also only met half of the criteria. We conclude that further studies are needed that include African American women in studies on preeclampsia.

ContributorsCheeks, Maiya (Author) / Lateef, Dalya (Thesis director) / Briggs, Georgette (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147825-Thumbnail Image.png
Description

A research project turned creative project focusing on the narrative of the student's perspective in the Next Generation Service Corps scholarship program. Using survey results from the program members, narratives of their experiences were compiled to offer insight and direction for the growth of the program.<br/><br/>A video of the defense

A research project turned creative project focusing on the narrative of the student's perspective in the Next Generation Service Corps scholarship program. Using survey results from the program members, narratives of their experiences were compiled to offer insight and direction for the growth of the program.<br/><br/>A video of the defense can be found at this link: https://youtu.be/O63NRz0z1Ys

ContributorsJanezic, John Henry (Author) / Hunt, Brett (Thesis director) / Smith, Jacqueline (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147959-Thumbnail Image.png
Description

An X class solar flare has the potential to remove our satellites from orbit, permanently deactivate our main forms of communication and bring humanity into a technology-free age. By using Geant4, it is possible to simulate several layers of the Earth's atmosphere and send a simulated solar flare and coronal

An X class solar flare has the potential to remove our satellites from orbit, permanently deactivate our main forms of communication and bring humanity into a technology-free age. By using Geant4, it is possible to simulate several layers of the Earth's atmosphere and send a simulated solar flare and coronal mass ejection. This thesis will show the interaction of photons and protons of various energies with several kilometers of atmosphere.

ContributorsDolghier, Kristian Adrian (Author) / Shovkovy, Igor (Thesis director) / Steinkamp, Brian (Committee member) / Economics Program in CLAS (Contributor) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148231-Thumbnail Image.png
Description

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This honors thesis

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This honors thesis project focuses on increasing the rate of vaccination outcomes in a country where people are increasingly busy (less time) and unwilling to get a needle through a new business venture that provides a service that brings vaccinations straight to businesses, making them available for their employees. Through our work with the Founders Lab, our team was able to create this pitch deck.

ContributorsGomez, Isaias Abraham (Co-author) / Hanzlick, Emily (Co-author) / Zatonskiy, Albert (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Silverstein, Taylor (Committee member) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149903-Thumbnail Image.png
Description
Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they

Neurostimulation methods currently include deep brain stimulation (DBS), optogenetic, transcranial direct-current stimulation (tDCS), and transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive techniques whereas DBS and optogenetic require surgical implantation of electrodes or light emitting devices. All approaches, except for optogenetic, have been implemented in clinical settings because they have demonstrated therapeutic utility and clinical efficacy for neurological and psychiatric disorders. When applied for therapeutic applications, these techniques suffer from limitations that hinder the progression of its intended use to treat compromised brain function. DBS requires an invasive surgical procedure that surfaces complications from infection, longevity of electrical components, and immune responses to foreign materials. Both TMS and tDCS circumvent the problems seen with DBS as they are noninvasive procedures, but they fail to produce the spatial resolution required to target specific brain structures. Realizing these restrictions, we sought out to use ultrasound as a neurostimulation modality. Ultrasound is capable of achieving greater resolution than TMS and tDCS, as we have demonstrated a ~2mm lateral resolution, which can be delivered noninvasively. These characteristics place ultrasound superior to current neurostimulation methods. For these reasons, this dissertation provides a developed protocol to use transcranial pulsed ultrasound (TPU) as a neurostimulation technique. These investigations implement electrophysiological, optophysiological, immunohistological, and behavioral methods to elucidate the effects of ultrasound on the central nervous system and raise questions about the functional consequences. Intriguingly, we showed that TPU was also capable of stimulating intact sub-cortical circuits in the anesthetized mouse. These data reveal that TPU can evoke synchronous oscillations in the hippocampus in addition to increasing expression of brain-derived neurotrophic factor (BDNF). Considering these observations, and the ability to noninvasively stimulate neuronal activity on a mesoscale resolution, reveals a potential avenue to be effective in clinical settings where current brain stimulation techniques have shown to be beneficial. Thus, the results explained by this dissertation help to pronounce the significance for these protocols to gain translational recognition.
ContributorsTufail, Yusuf Zahid (Author) / Tyler, William J (Thesis advisor) / Duch, Carsten (Committee member) / Muthuswamy, Jitendran (Committee member) / Santello, Marco (Committee member) / Tillery, Stephen H (Committee member) / Arizona State University (Publisher)
Created2011
150222-Thumbnail Image.png
Description
An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space

An accurate sense of upper limb position is crucial to reaching movements where sensory information about upper limb position and target location is combined to specify critical features of the movement plan. This dissertation was dedicated to studying the mechanisms of how the brain estimates the limb position in space and the consequences of misestimation of limb position on movements. Two independent but related studies were performed. The first involved characterizing the neural mechanisms of limb position estimation in the non-human primate brain. Single unit recordings were obtained in area 5 of the posterior parietal cortex in order to examine the role of this area in estimating limb position based on visual and somatic signals (proprioceptive, efference copy). When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons were modulated by visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level. The second part of this dissertation focused on the consequences of misestimation of limb position for movement production. It is well known that limb movements are inherently variable. This variability could be the result of noise arising at one or more stages of movement production. Here we used biomechanical modeling and simulation techniques to characterize movement variability resulting from noise in estimating limb position ('sensing noise') and in planning required movement vectors ('planning noise'), and compared that to the variability expected due to noise in movement execution. We found that the effects of sensing and planning related noise on movement variability were dependent upon both the planned movement direction and the initial configuration of the arm and were different in many respects from the effects of execution noise.
ContributorsShi, Ying (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / He, Jiping (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2011