Matching Items (69)
Filtering by

Clear all filters

129256-Thumbnail Image.png
Description

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as an effective method to reduce temperature and energy consumption in cities, its impacts on environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a set of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-07-01
129257-Thumbnail Image.png
Description

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we develop a stochastic algorithm to estimate view factors between canyon facets in the presence of shade trees based on Monte Carlo simulation, where an analytical formulation is inhibited by the complex geometry. The model is validated against analytical solutions of benchmark radiative problems as well as field measurements in real street canyons. In conjunction with the matrix method resolving infinite number of reflections, the proposed model is capable of predicting the radiative exchange inside the street canyon with good accuracy. Modeling of transient evolution of thermal filed inside the street canyon using the proposed method demonstrate the potential of shade trees in mitigating canyon surface temperatures as well as saving of building energy use. This new numerical framework also deepens our insight into the fundamental physics of radiative heat transfer and surface energy balance for urban climate modeling.

ContributorsWang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
129300-Thumbnail Image.png
Description

Ecological models are a fundamental tool that archaeologists use to clarify our thinking about the processes that generate the archaeological record. Typically, arguments reasoned from a single model are bolstered by observing the consistency of ethnographic data with the argument. This validation of a model establishes that an argument is

Ecological models are a fundamental tool that archaeologists use to clarify our thinking about the processes that generate the archaeological record. Typically, arguments reasoned from a single model are bolstered by observing the consistency of ethnographic data with the argument. This validation of a model establishes that an argument is reasonable. In this paper, we attempt to move beyond validation by comparing the consistency of two arguments reasoned from different models that might explain corporate territorial ownership in a large ethnographic data set. Our results suggest that social dilemmas are an under appreciated mechanism that can drive the evolution of corporate territorial ownership. When social dilemmas emerge, the costs associated with provisioning the public goods of information on resources or, perhaps, common defence create situations in which human foragers gain more by cooperating to recognize corporate ownership rules than they lose. Our results also indicate that societies who share a common cultural history are more likely to recognize corporate ownership, and there is a spatial dynamic in which societies who live near each other are more likely to recognize corporate ownership as the number of near-by groups who recognize ownership increases. Our results have important implications for investigating the coevolution of territorial ownership and the adoption of food production in the archaeological record.

ContributorsFreeman, Jacob (Author) / Anderies, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-01
129219-Thumbnail Image.png
Description

Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics

Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics is used to investigate the complex transient dynamics of the population response. Though simple, our modeling approach exhibits a surprisingly rich and diverse array of dynamics. Our results highlight the critical roles played by diversity in strategies and the magnitude of the shift. Importantly, it allows for a variety of strategies to arise organically as an integral part of the transient dynamics-as opposed to an independent process-of population response to a regime shift, providing a link between the population's past and future diversity patterns. Several combinations of different populations' strategy distributions and shifts were systematically investigated. Such rich dynamics highlight the challenges of anticipating the response of a divided population to a change. The findings in this paper can potentially improve our understanding of a wide range of socio-ecological and technological transitions.

Created2015-07-10
128941-Thumbnail Image.png
Description

Background: Physical activity (PA) interventions typically include components or doses that are static across participants. Adaptive interventions are dynamic; components or doses change in response to short-term variations in participant's performance. Emerging theory and technologies make adaptive goal setting and feedback interventions feasible.

Objective: To test an adaptive intervention for PA based on

Background: Physical activity (PA) interventions typically include components or doses that are static across participants. Adaptive interventions are dynamic; components or doses change in response to short-term variations in participant's performance. Emerging theory and technologies make adaptive goal setting and feedback interventions feasible.

Objective: To test an adaptive intervention for PA based on Operant and Behavior Economic principles and a percentile-based algorithm. The adaptive intervention was hypothesized to result in greater increases in steps per day than the static intervention.

Methods: Participants (N = 20) were randomized to one of two 6-month treatments: 1) static intervention (SI) or 2) adaptive intervention (AI). Inactive overweight adults (85% women, M = 36.9±9.2 years, 35% non-white) in both groups received a pedometer, email and text message communication, brief health information, and biweekly motivational prompts. The AI group received daily step goals that adjusted up and down based on the percentile-rank algorithm and micro-incentives for goal attainment. This algorithm adjusted goals based on a moving window; an approach that responded to each individual's performance and ensured goals were always challenging but within participants' abilities. The SI group received a static 10,000 steps/day goal with incentives linked to uploading the pedometer's data.

Results: A random-effects repeated-measures model accounted for 180 repeated measures and autocorrelation. After adjusting for covariates, the treatment phase showed greater steps/day relative to the baseline phase (p<.001) and a group by study phase interaction was observed (p = .017). The SI group increased by 1,598 steps/day on average between baseline and treatment while the AI group increased by 2,728 steps/day on average between baseline and treatment; a significant between-group difference of 1,130 steps/day (Cohen's d = .74).

Conclusions: The adaptive intervention outperformed the static intervention for increasing PA. The adaptive goal and feedback algorithm is a “behavior change technology” that could be incorporated into mHealth technologies and scaled to reach large populations.

ContributorsAdams, Marc (Author) / Sallis, James F. (Author) / Norman, Gregory J. (Author) / Hovell, Melbourne F. (Author) / Hekler, Eric (Author) / Perata, Elyse (Author) / College of Health Solutions (Contributor)
Created2013-12-09
128957-Thumbnail Image.png
Description

Background: An evidence-based steps/day translation of U.S. federal guidelines for youth to engage in ≥60 minutes/day of moderate-to-vigorous physical activity (MVPA) would help health researchers, practitioners, and lay professionals charged with increasing youth’s physical activity (PA). The purpose of this study was to determine the number of free-living steps/day (both raw and

Background: An evidence-based steps/day translation of U.S. federal guidelines for youth to engage in ≥60 minutes/day of moderate-to-vigorous physical activity (MVPA) would help health researchers, practitioners, and lay professionals charged with increasing youth’s physical activity (PA). The purpose of this study was to determine the number of free-living steps/day (both raw and adjusted to a pedometer scale) that correctly classified children (6–11 years) and adolescents (12–17 years) as meeting the 60-minute MVPA guideline using the 2005–2006 National Health and Nutrition Examination Survey (NHANES) accelerometer data, and to evaluate the 12,000 steps/day recommendation recently adopted by the President’s Challenge Physical Activity and Fitness Awards Program.

Methods: Analyses were conducted among children (n = 915) and adolescents (n = 1,302) in 2011 and 2012. Receiver Operating Characteristic (ROC) curve plots and classification statistics revealed candidate steps/day cut points that discriminated meeting/not meeting the MVPA threshold by age group, gender and different accelerometer activity cut points. The Evenson and two Freedson age-specific (3 and 4 METs) cut points were used to define minimum MVPA, and optimal steps/day were examined for raw steps and adjusted to a pedometer-scale to facilitate translation to lay populations.

Results: For boys and girls (6–11 years) with ≥ 60 minutes/day of MVPA, a range of 11,500–13,500 uncensored steps/day for children was the optimal range that balanced classification errors. For adolescent boys and girls (12–17) with ≥60 minutes/day of MVPA, 11,500–14,000 uncensored steps/day was optimal. Translation to a pedometer-scaling reduced these minimum values by 2,500 step/day to 9,000 steps/day. Area under the curve was ≥84% in all analyses.

Conclusions: No single study has definitively identified a precise and unyielding steps/day value for youth. Considering the other evidence to date, we propose a reasonable ‘rule of thumb’ value of ≥ 11,500 accelerometer-determined steps/day for both children and adolescents (and both genders), accepting that more is better. For practical applications, 9,000 steps/day appears to be a more pedometer-friendly value.

ContributorsAdams, Marc (Author) / Johnson, William D. (Author) / Tudor-Locke, Catrine (Author) / College of Health Solutions (Contributor)
Created2013-04-21
129072-Thumbnail Image.png
Description

Background: Many studies used the older ActiGraph (7164) for physical activity measurement, but this model has been replaced with newer ones (e.g., GT3X+). The assumption that new generation models are more accurate has been questioned, especially for measuring lower intensity levels. The low-frequency extension (LFE) increases the low-intensity sensitivity of newer

Background: Many studies used the older ActiGraph (7164) for physical activity measurement, but this model has been replaced with newer ones (e.g., GT3X+). The assumption that new generation models are more accurate has been questioned, especially for measuring lower intensity levels. The low-frequency extension (LFE) increases the low-intensity sensitivity of newer models, but its comparability with older models is unknown. This study compared step counts and physical activity collected with the 7164 and GT3X + using the Normal Filter and the LFE (GT3X+N and GT3X+LFE, respectively).

Findings: Twenty-five adults wore 2 accelerometer models simultaneously for 3Âdays and were instructed to engage in typical behaviors. Average daily step counts and minutes per day in nonwear, sedentary, light, moderate, and vigorous activity were calculated. Repeated measures ANOVAs with post-hoc pairwise comparisons were used to compare mean values. Means for the GT3X+N and 7164 were significantly different in 4 of the 6 categories (p < .05). The GT3X+N showed 2041 fewer steps per day and more sedentary, less light, and less moderate than the 7164 (+25.6, -31.2, -2.9 mins/day, respectively). The GT3X+LFE showed non-significant differences in 5 of 6 categories but recorded significantly more steps (+3597 steps/day; p < .001) than the 7164.

Conclusion: Studies using the newer ActiGraphs should employ the LFE for greater sensitivity to lower intensity activity and more comparable activity results with studies using the older models. Newer generation ActiGraphs do not produce comparable step counts to the older generation devices with the Normal filter or the LFE.

ContributorsCain, Kelli L. (Author) / Conway, Terry L. (Author) / Adams, Marc (Author) / Husak, Lisa E. (Author) / Sallis, James F. (Author) / College of Health Solutions (Contributor)
Created2013-04-25
129089-Thumbnail Image.png
Description

Background: Public parks can be an important setting for physical activity promotion, but to increase park use and the activity levels of park users, the crucial attributes related to active park use need to be defined. Not only user characteristics and structural park attributes, but also characteristics of the surrounding neighborhood

Background: Public parks can be an important setting for physical activity promotion, but to increase park use and the activity levels of park users, the crucial attributes related to active park use need to be defined. Not only user characteristics and structural park attributes, but also characteristics of the surrounding neighborhood are important to examine. Furthermore, internationally comparable studies are needed, to find out if similar intervention strategies might be effective worldwide. The main aim of this study was to examine whether the overall number of park visitors and their activity levels depend on study site, neighborhood walkability and neighborhood income.

Methods: Data were collected in 20 parks in Ghent, Belgium and San Diego, USA. Two trained observers systematically coded park characteristics using the Environmental Assessment of Public Recreation Spaces (EAPRS) tool, and park user characteristics using the System for Observing Play and recreation in Communities (SOPARC) tool. Multilevel multiple regression models were conducted in MLwiN 2.25.

Results: In San Diego parks, activity levels of park visitors and number of vigorously active visitors were higher than in Ghent, while the number of visitors walking and the overall number of park visitors were lower. Neighborhood walkability was positively associated with the overall number of visitors, the number of visitors walking, number of sedentary visitors and mean activity levels of visitors. Neighborhood income was positively associated with the overall number of visitors, but negatively with the number of visitors being vigorously active.

Conclusions: Neighborhood characteristics are important to explain park use. Neighborhood walkability-related attributes should be taken into account when promoting the use of existing parks or creating new parks. Because no strong differences were found between parks in high- and low-income neighborhoods, it seems that promoting park use might be a promising strategy to increase physical activity in low-income populations, known to be at higher risk for overweight and obesity.

ContributorsVan Dyck, Define (Author) / Sallis, James F. (Author) / Cardon, Greet (Author) / Deforche, Benedicte (Author) / Adams, Marc (Author) / Geremia, Carrie (Author) / De Bourdeaudhuij, Ilse (Author) / College of Health Solutions (Contributor)
Created2013-05-07
129125-Thumbnail Image.png
Description

In 2013, the community of mathematical scientists and educators focused its collective attention on the mathematics of planet Earth. In the course of the year, a grassroots organization grew into an international partnership of more than 150 scientific societies, universities, research institutes, and organizations. The project, known as “Mathematics of

In 2013, the community of mathematical scientists and educators focused its collective attention on the mathematics of planet Earth. In the course of the year, a grassroots organization grew into an international partnership of more than 150 scientific societies, universities, research institutes, and organizations. The project, known as “Mathematics of Planet Earth 2013” (MPE2013), received the patronage of UNESCO and was a truly unique event. It brought the challenges facing our planet to the attention of the mathematics research community in numerous lectures, seminars, workshops, and special sessions at conferences of the professional societies; it sponsored the development of curriculum materials for all educational levels; it organized many outreach activities, including an international juried exhibit of virtual and physical displays for use in museums and schools; and it presented a series of public lectures by renowned scientists showing the public how mathematics contributes to our understanding of planet Earth, the nature of the challenges our planet is facing, and how mathematicians contribute to their solution. At the end of the year, MPE2013 morphed into “Mathematics of Planet Earth” (MPE).

ContributorsAnderies, John (Author) / Kaper, Hans G. (Author) / Shuckburgh, Emily F. (Author) / Zagaris, Antonios (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-01
129015-Thumbnail Image.png
Description

Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This

Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This paper documents variation in comparable built environment features across countries from diverse regions.

Methods: The International Physical Activity and the Environment Network (IPEN) study of adults aimed to measure the full range of variation in the built environment using geographic information systems (GIS) across 12 countries on 5 continents. Investigators in Australia, Belgium, Brazil, Colombia, the Czech Republic, Denmark, China, Mexico, New Zealand, Spain, the United Kingdom, and the United States followed a common research protocol to develop internationally comparable measures. Using detailed instructions, GIS-based measures included features such as walkability (i.e., residential density, street connectivity, mix of land uses), and access to public transit, parks, and private recreation facilities around each participant’s residential address using 1-km and 500-m street network buffers.

Results: Eleven of 12 countries and 15 cities had objective GIS data on built environment features. We observed a 38-fold difference in median residential densities, a 5-fold difference in median intersection densities and an 18-fold difference in median park densities. Hong Kong had the highest and North Shore, New Zealand had the lowest median walkability index values, representing a difference of 9 standard deviations in GIS-measured walkability.

Conclusions: Results show that comparable measures can be created across a range of cultural settings revealing profound global differences in urban form relevant to physical activity. These measures allow cities to be ranked more precisely than previously possible. The highly variable measures of urban form will be used to explain individuals’ physical activity, sedentary behaviors, body mass index, and other health outcomes on an international basis. Present measures provide the ability to estimate dose–response relationships from projected changes to the built environment that would otherwise be impossible.

ContributorsAdams, Marc (Author) / Frank, Lawrence D. (Author) / Schipperijn, Jasper (Author) / Smith, Graham (Author) / Chapman, James (Author) / Christiansen, Lars B. (Author) / Coffee, Neil (Author) / Salvo, Deborah (Author) / du Toit, Lorinne (Author) / Dygryn, Jan (Author) / Hino, Adriano Akira Ferreira (Author) / Lai, Poh-chin (Author) / Mavoa, Suzanne (Author) / Pinzon, Jose David (Author) / Van de Weghe, Nico (Author) / Cerin, Ester (Author) / Davey, Rachel (Author) / Macfarlane, Duncan (Author) / Owen, Neville (Author) / Sallis, James F. (Author) / College of Health Solutions (Contributor)
Created2014-10-25