Matching Items (81)
158658-Thumbnail Image.png
Description
Background: Children’s fruit and vegetable consumption in the United States is lower than recommended. School lunch is an opportunity for students to be exposed to fruits and vegetables and potentially increase their daily intake. The purpose of this study is to examine the relationship between tray color and fruit and

Background: Children’s fruit and vegetable consumption in the United States is lower than recommended. School lunch is an opportunity for students to be exposed to fruits and vegetables and potentially increase their daily intake. The purpose of this study is to examine the relationship between tray color and fruit and vegetable selection, consumption, and waste at lunch.

Methods: Study participants (n=1469) were elementary and middle school students who ate school lunch on the day of data collection. Photographs and weights (to nearest 2 g) were taken of fruits and vegetables on students’ trays before and after lunch. Trained research assistants viewed photographs and sorted trays into variable categories: color of main tray, presence/absence of secondary fruit/vegetable container, and color of secondary fruit/vegetable container. Fruit and vegetable selection, consumption, and waste were calculated using tray weights. Negative binomial regression models adjusted for gender, grade level, race/ethnicity, free/reduced price lunch status, and within-school similarities were used to examine relationships between tray color and fruit and vegetable selection, consumption, and waste.

Results: Findings indicated that students with a light tray selected (IRR= 0.44), consumed (IRR=0.73) and wasted (IRR=0.81) less fruit and vegetables. Students without a secondary fruit/vegetable container selected (IRR=0.66) and consumed (IRR=0.49) less fruit and vegetables compared to those with a secondary container. Light or clear secondary fruit and vegetable containers were related to increased selection (IRR=2.06 light, 2.30 clear) and consumption (IRR=1.95 light, 2.78 clear) compared to dark secondary containers, while light secondary containers were related to decreased waste (IRR= 0.57).

Conclusion: Tray color may influence fruit and vegetable selection, consumption, and waste among students eating school lunch. Further research is needed to determine if there is a cause and effect relationship. If so, adjusting container colors may be a practical intervention for schools hoping to increase fruit and vegetable intake among students.
ContributorsWeight, Raquelle (Author) / Bruening, Meg (Thesis advisor) / Adams, Marc (Committee member) / Martinelli, Sarah (Committee member) / Arizona State University (Publisher)
Created2020
157983-Thumbnail Image.png
Description
Background: Exercise is Medicine (EIM) is a health promotion strategy for addressing physical inactivity in healthcare. However, it is unknown how to successfully implement the processes.

Purpose: The purpose of this study was to understand how implementing EIM influenced provider behaviors in a university-based healthcare system, using a process evaluation.

Methods:

Background: Exercise is Medicine (EIM) is a health promotion strategy for addressing physical inactivity in healthcare. However, it is unknown how to successfully implement the processes.

Purpose: The purpose of this study was to understand how implementing EIM influenced provider behaviors in a university-based healthcare system, using a process evaluation.

Methods: A multiple baseline, time series design was used. Providers were allocated to three groups. Group 1 (n=11) was exposed to an electronic medical record (EMR) systems change, EIM-related resources, and EIM training session. Group 2 (n=5) received the EMR change and resources but no training. Group 3 (n=6) was only exposed to the systems change. The study was conducted across three phases. Outcomes included asking about patient physical activity (PA) as a vital sign (PAVS), prescribing PA (ExRx), and providing PA resources or referrals. Patient surveys and EMR data were examined. Time series analysis, chi-square, and logistic regression were used.

Results: Patient survey data revealed the systems change increased patient reports of being asked about PA, χ2(4) = 95.47, p < .001 for all groups. There was a significant effect of training and resource dissemination on patients receiving PA advice, χ2(4) = 36.25, p < .001. Patients receiving PA advice was greater during phase 2 (OR = 4.7, 95% CI = 2.0-11.0) and phase 3 (OR = 2.9, 95% CI = 1.2-7.4). Increases were also observed in EMR data for PAVS, χ2(2) = 29.27, p <. 001 during implementation for all groups. Increases in PA advice χ2(2) = 140.90, p < .001 occurred among trained providers only. No statistically significant change was observed for ExRx, PA resources or PA referrals. However, visual analysis showed an upwards trend among trained providers.

Conclusions: An EMR systems change is effective for increasing the collection of the PAVS. Training and resources may influence provider behavior but training alone increased provider documentation. The low levels of documented outcomes for PA advice, ExRx, resources, or referrals may be due to the limitations of the EMR system. This approach was effective for examining the EIM Solution and scaled-up, longer trials may yield more robust results.
ContributorsBirchfield, Natasha R (Author) / Der Ananian, Cheryl (Thesis advisor) / Krasnow, Aaron (Committee member) / Doebbeling, Bradley (Committee member) / Adams, Marc (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2019
161879-Thumbnail Image.png
Description
Background: Studies show that rural schools may be less supportive of student fruit/vegetable (FV) consumption, but few studies have investigated the relationship between school locale and FVs. The aim of this research is to analyze the relationship between school locale (rural vs. urban) and students’ FV selection, consumption, and waste

Background: Studies show that rural schools may be less supportive of student fruit/vegetable (FV) consumption, but few studies have investigated the relationship between school locale and FVs. The aim of this research is to analyze the relationship between school locale (rural vs. urban) and students’ FV selection, consumption, and waste in elementary, middle, and high schools. Methods: A cross-sectional analysis of 37 Arizona schools evaluated differences in the selection, consumption, and waste of fresh FVs from students (n=2525; 45.7% female; 41% non-white; mean age=11.6±3.3; 23.5% rural) using objective plate waste measures. Zero-inflated negative binomial regressions examined differences in FV grams selected, consumed, and wasted by urban vs. rural locale, adjusted for sociodemographics and school. Results: The percent of students who selected, consumed, and wasted zero grams of FVs were 14%, 21%, 20%, respectively. Among students with some (non-zero amounts), the average selected, consumed, and wasted FVs were 115.0±81.4g, 51.7.5±65.1g, 65.2±66.7g, respectively. Rural students (versus urban) had lower odds of selecting (OR=0.75), consuming (OR=0.78), and wasting (OR=0.71) any FVs, after adjusting for covariates. However, among students with some FVs on their plates, rural students selected (IRR=1.40), consumed (IRR=1.18) and wasted (IRR=1.62) more grams of FVs. Conclusions: Rural students had reduced odds of selecting and consuming any FVs, but with lower odds of waste, perhaps due to reduced selection. Once some FVs were on the tray, likelihood of consumption and waste by rural students were greater. Results support interventions targeting rural students’ FV intake to reduce waste.
ContributorsJepson, Molly Eilish (Author) / Bruening, Meg (Thesis advisor) / Adams, Marc (Committee member) / Grgich, Traci (Committee member) / Arizona State University (Publisher)
Created2021
161445-Thumbnail Image.png
Description
Objective: To conduct a content analysis of nutrition marketing in school cafeterias in Arizona to understand how nutrition concepts are currently marketed to students. This is the first study to investigate the content of nutrition marketing in school cafeterias, and also the first to compare content across elementary, middle, and

Objective: To conduct a content analysis of nutrition marketing in school cafeterias in Arizona to understand how nutrition concepts are currently marketed to students. This is the first study to investigate the content of nutrition marketing in school cafeterias, and also the first to compare content across elementary, middle, and high schools. Methods: Photographs of marketing materials on display in school cafeterias were obtained from a convenient sample of 13 elementary schools, 12 middle schools, and 12 high schools. In total, n=284 examples of nutrition marketing were collected. The photographs were sorted by grade level and then coded quantitatively and qualitatively based on their purpose, visual aspects, marketing strategies used, and language and literacy aspects. Given the multiple comparisons, statistical significance was assessed with a Bonferroni adjustment of p<0.0006. Results: The average number of nutrition marketing materials within the school cafeterias was 7.7 ± 7.2. The purpose of the marketing materials ranged from promoting selection and consumption of fruits and vegetables, promoting nutrition and physical activity together, food safety, and educating about healthy eating. The sample of nutrition marketing materials emphasized selecting F/Vs over consumption of F/Vs. However, the opposite was found in marketing that exclusively promoted fruits and vegetables. The most common type of marketing in school cafeterias were flyers and most of the materials were small in size. The sample demonstrated a lack of implementation of marketing appeals in half of the sample, but the half that did utilized techniques that are known to be appealing to child and adolescent demographics, such as use of cartoons, humor, and social media/websites. 98.9% of the nutrition marketing with text were written in English and only 1.1% of the materials (n=3) were written in Spanish. Conclusion: The nutrition marketing sample demonstrated some use of social marketing principles but does not compete with the scale and scope of the child-directed food and beverage marketing that students encounter in their environment. More research is needed to better understand how to best target nutrition marketing to child and adolescent student populations.
ContributorsXavier, Raevyn Francine (Author) / Bruening, Meg (Thesis advisor) / Adams, Marc (Committee member) / Lorts, Cori (Committee member) / Arizona State University (Publisher)
Created2021
129516-Thumbnail Image.png
Description

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered

Deposits of dark material appear on Vesta’s surface as features of relatively low-albedo in the visible wavelength range of Dawn’s camera and spectrometer. Mixed with the regolith and partially excavated by younger impacts, the material is exposed as individual layered outcrops in crater walls or ejecta patches, having been uncovered and broken up by the impact. Dark fans on crater walls and dark deposits on crater floors are the result of gravity-driven mass wasting triggered by steep slopes and impact seismicity. The fact that dark material is mixed with impact ejecta indicates that it has been processed together with the ejected material. Some small craters display continuous dark ejecta similar to lunar dark-halo impact craters, indicating that the impact excavated the material from beneath a higher-albedo surface. The asymmetric distribution of dark material in impact craters and ejecta suggests non-continuous distribution in the local subsurface. Some positive-relief dark edifices appear to be impact-sculpted hills with dark material distributed over the hill slopes.

Dark features inside and outside of craters are in some places arranged as linear outcrops along scarps or as dark streaks perpendicular to the local topography. The spectral characteristics of the dark material resemble that of Vesta’s regolith. Dark material is distributed unevenly across Vesta’s surface with clusters of all types of dark material exposures. On a local scale, some craters expose or are associated with dark material, while others in the immediate vicinity do not show evidence for dark material. While the variety of surface exposures of dark material and their different geological correlations with surface features, as well as their uneven distribution, indicate a globally inhomogeneous distribution in the subsurface, the dark material seems to be correlated with the rim and ejecta of the older Veneneia south polar basin structure. The origin of the dark material is still being debated, however, the geological analysis suggests that it is exogenic, from carbon-rich low-velocity impactors, rather than endogenic, from freshly exposed mafic material or melt, exposed or created by impacts.

ContributorsJaumann, R. (Author) / Nass, A. (Author) / Otto, K. (Author) / Krohn, K. (Author) / Stephan, K. (Author) / McCord, T. B. (Author) / Williams, David (Author) / Raymond, C. A. (Author) / Blewett, D. T. (Author) / Hiesinger, H. (Author) / Yingst, R. A. (Author) / De Sanctis, M. C. (Author) / Palomba, E. (Author) / Roatsch, T. (Author) / Matz, K-D. (Author) / Preusker, F. (Author) / Scholten, F. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-15
Description

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare.

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid.

Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides.

Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

ContributorsRoss, Caitlin R. (Author) / DeFelice, Dominick S. (Author) / Hunt, Greg J. (Author) / Ihle, Kate (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-21
129393-Thumbnail Image.png
Description

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon”

We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual “dark ribbon” material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.

ContributorsBuczkowski, D. L. (Author) / Wyrick, D.Y. (Author) / Toplis, M. (Author) / Yingst, R. A. (Author) / Williams, David (Author) / Garry, W. B. (Author) / Mest, S. (Author) / Kneissl, T. (Author) / Scully, J. E. C. (Author) / Nathues, A. (Author) / De Sanctis, M. C. (Author) / Le Corre, L. (Author) / Reddy, V. (Author) / Hoffmann, M. (Author) / Ammannito, E. (Author) / Frigeri, A. (Author) / Tosi, F. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Raymond, C. A. (Author) / Jaumann, R. (Author) / Pieters, C. M. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-14
129395-Thumbnail Image.png
Description

Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta’s low surface gravity (0.25 m/s2) has led to the continual absence of a

Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta’s low surface gravity (0.25 m/s2) has led to the continual absence of a protective atmosphere and consequently impact cratering and impact-related processes are prevalent. Previous work has shown that the formation of the Rheasilvia impact basin induced the equatorial Divalia Fossae, whereas the formation of the Veneneia impact basin induced the northern Saturnalia Fossae. Expanding upon this earlier work, we conducted photogeologic mapping of the Saturnalia Fossae, adjacent structures and geomorphic units in two of Vesta’s northern quadrangles: Caparronia and Domitia. Our work indicates that impact processes created and/or modified all mapped structures and geomorphic units. The mapped units, ordered from oldest to youngest age based mainly on cross-cutting relationships, are: (1) Vestalia Terra unit, (2) cratered highlands unit, (3) Saturnalia Fossae trough unit, (4) Saturnalia Fossae cratered unit, (5) undifferentiated ejecta unit, (6) dark lobate unit, (7) dark crater ray unit and (8) lobate crater unit. The Saturnalia Fossae consist of five separate structures: Saturnalia Fossa A is the largest (maximum width of ∼43 km) and is interpreted as a graben, whereas Saturnalia Fossa B-E are smaller (maximum width of ∼15 km) and are interpreted as half grabens formed by synthetic faults. Smaller, second-order structures (maximum width of <1 km) are distinguished from the Saturnalia Fossae, a first-order structure, by the use of the general descriptive term ‘adjacent structures’, which encompasses minor ridges, grooves and crater chains. For classification purposes, the general descriptive term ‘minor ridges’ characterizes ridges that are not part of the Saturnalia Fossae and are an order of magnitude smaller (maximum width of <1 km vs. maximum width of ∼43 km). Shear deformation resulting from the large-scale (diameter of <100 km) Rheasilvia impact is proposed to form minor ridges (∼2 km to ∼25 km in length), which are interpreted as the surface expression of thrust faults, as well as grooves (∼3 km to ∼25 km in length) and pit crater chains (∼1 km to ∼25 km in length), which are interpreted as the surface expression of extension fractures and/or dilational normal faults. Secondary crater material, ejected from small-scale and medium-scale impacts (diameters of <100 km), are interpreted to form ejecta ray systems of grooves and crater chains by bouncing and scouring across the surface. Furthermore, seismic shaking, also resulting from small-scale and medium-scale impacts, is interpreted to form minor ridges because seismic shaking induces flow of regolith, which subsequently accumulates as minor ridges that are roughly parallel to the regional slope. In this work we expand upon the link between impact processes and structural features on Vesta by presenting findings of a photogeologic, structural mapping study which highlights how impact cratering and impact-related processes are expressed on this unique, intermediate Solar System body.

ContributorsScully, Jennifer E. C. (Author) / Yin, A. (Author) / Russell, C. T. (Author) / Buczkowski, D. L. (Author) / Williams, David (Author) / Blewett, D. T. (Author) / Ruesch, O. (Author) / Hiesinger, H. (Author) / Le Corre, L. (Author) / Mercer, Cameron (Author) / Yingst, R. A. (Author) / Garry, W. B. (Author) / Jaumann, R. (Author) / Roatsch, T. (Author) / Preusker, F. (Author) / Gaskell, R.W. (Author) / Schroder, S.E. (Author) / Ammannito, E. (Author) / Pieters, C. M. (Author) / Raymond, C. A. (Author) / DREAM 9 AML-OPC Consortium (Contributor)
Created2014-01-29
129396-Thumbnail Image.png
Description

We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft’s High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta

We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft’s High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn’s arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound.

However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta’s geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits.

Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

ContributorsYingst, R. A. (Author) / Mest, S. C. (Author) / Berman, D. C. (Author) / Garry, W. B. (Author) / Williams, David (Author) / Buczkowski, D. (Author) / Jaumann, R. (Author) / Pieters, C. M. (Author) / De Sanctis, M. C. (Author) / Frigeri, A. (Author) / Le Corre, L. (Author) / Preusker, F. (Author) / Raymond, C. A. (Author) / Reddy, V. (Author) / Russell, C. T. (Author) / Roatsch, T. (Author) / Schenk, P. M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-15
129398-Thumbnail Image.png
Description

In this paper we present a time-stratigraphic scheme and geologic time scale for the protoplanet Vesta, based on global geologic mapping and other analyses of NASA Dawn spacecraft data, complemented by insights gained from laboratory studies of howardite–eucrite–diogenite (HED) meteorites and geophysical modeling. On the basis of prominent impact structures

In this paper we present a time-stratigraphic scheme and geologic time scale for the protoplanet Vesta, based on global geologic mapping and other analyses of NASA Dawn spacecraft data, complemented by insights gained from laboratory studies of howardite–eucrite–diogenite (HED) meteorites and geophysical modeling. On the basis of prominent impact structures and their associated deposits, we propose a time scale for Vesta that consists of four geologic time periods: Pre-Veneneian, Veneneian, Rheasilvian, and Marcian. The Pre-Veneneian Period covers the time from the formation of Vesta up to the Veneneia impact event, from 4.6 Ga to >2.1 Ga (using the asteroid flux-derived chronology system) or from 4.6 Ga to 3.7 Ga (under the lunar-derived chronology system). The Veneneian Period covers the time span between the Veneneia and Rheasilvia impact events, from >2.1 to 1 Ga (asteroid flux-derived chronology) or from 3.7 to 3.5 Ga (lunar-derived chronology), respectively. The Rheasilvian Period covers the time span between the Rheasilvia and Marcia impact events, and the Marcian Period covers the time between the Marcia impact event until the present. The age of the Marcia impact is still uncertain, but our current best estimates from crater counts of the ejecta blanket suggest an age between ∼120 and 390 Ma, depending upon choice of chronology system used. Regardless, the Marcia impact represents the youngest major geologic event on Vesta. Our proposed four-period geologic time scale for Vesta is, to a first order, comparable to those developed for other airless terrestrial bodies.

ContributorsWilliams, David (Author) / Jaumann, R. (Author) / McSween, H. Y. (Author) / Marchi, S. (Author) / Schmedemann, N. (Author) / Raymond, C. A. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01