Matching Items (146)
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study

The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study aims to assess the current state of research and identify trends that may guide future investigations. Following the guidelines established by PRISMA, a total sample of 26 research papers were extracted from the electronic databases, PubMed and Scopus. These papers were categorized based on their publication dates, and research questions were formulated regarding three main topics: venom type, cancer-targeting mechanism, and cancer type. Statistical analysis of the research questions was performed using 2x2 contingency tables for a chi-square test. The results of the analysis reveal a statistically significant increase in publications focused on cell death mechanisms and breast cancer in recent years. This increase in publications reflects a growing interest in the potential for venom to induce apoptosis in cancer cells and target the unique biological properties of breast cancer. Overall, this meta-analysis offers insight into the evolving sphere of venom-based cancer research, providing a glimpse into the potential trajectory of this field.
ContributorsHolder, Marina (Author) / Amdam, Gro (Thesis director) / Mana, Miyeko (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2023-12
Description
Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and

Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and associated stigma in the context of the parent-child relationship. This cross-sectional study examined self-reported weight stigma experience and internalization within 42 parent/adolescent dyads to provide greater understanding of how adolescents and parents are experiencing and internalizing weight stigma independently and transversely.
ContributorsMillett, Emma (Author) / McEntee, Mindy (Thesis director) / Adams, Marc (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-12
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
168492-Thumbnail Image.png
Description
There is an estimated five trillion pieces of plastic in the global ocean, with 4.8 to 12.7 million metric tons entering the ocean annually. Much of the plastic in the ocean is in the form of microplastics, or plastic particles <5mm in size. Microplastics enter the marine environment as primary

There is an estimated five trillion pieces of plastic in the global ocean, with 4.8 to 12.7 million metric tons entering the ocean annually. Much of the plastic in the ocean is in the form of microplastics, or plastic particles <5mm in size. Microplastics enter the marine environment as primary or secondary microplastics; primary microplastics are pre-manufactured micro-sized particles, such as microbeads used in cosmetics, while secondary microplastics form from the degradation of larger plastic objects, such water bottles. Once in the ocean, plastics are readily colonized by a consortium of prokaryotic and eukaryotic organisms, which form dense biofilms on the plastic; this biofilm is termed the “plastisphere”. Despite growing concerns about the ecological impact of microplastics and their respective plastispheres on the marine environment, there is little consensus about the factors that shape the plastisphere on environmentally relevant secondary microplastics. The goal of my dissertation is to comprehensively analyze the role of plastic polymer type, incubation time, and geographic location on shaping plastisphere communities attached to secondary microplastics. I investigated the plastisphere of six chemically distinct plastic polymer types obtained from common household consumer products that were incubated in the coastal Caribbean (Bocas del Toro, Panama) and coastal Pacific (San Diego, CA) oceans. Genotyping using 16S and 18S rRNA gene amplification and next-generation Illumina sequencing was employed to identify bacterial and eukaryotic communities on the polymer surfaces. Statistical analyses show that there were no polymer-specific assemblages for prokaryotes or eukaryotes, but rather a microbial core community that was shared among plastic types. I also found that rare hydrocarbon degrading bacteria may be specific to certain chemical properties of the microplastics. Statistical comparisons of the communities across both sites showed that prokaryotic plastispheres were shaped primarily by incubation time and geographic location. Finally, I assessed the impact of biofilms on microplastic degradation and deposition and conclude that biofilms enhance microplastic sinking of negatively buoyant particles and reduce microplastic degradation. The results of my dissertation increases understanding of the factors that shape the plastisphere and how these communities ultimately determine the fate of microplastics in the marine environment.
ContributorsDudek, Kassandra Lynn (Author) / Neuer, Susanne (Thesis advisor) / Polidoro, Beth (Committee member) / Garcia-Pichel, Ferran (Committee member) / Cao, Huansheng (Committee member) / Arizona State University (Publisher)
Created2021
168497-Thumbnail Image.png
Description
With the development and successful landing of the NASA Perseverance rover, there has been growing interest in identifying how evidence of ancient life may be preserved and recognized in the geologic record. Environments that enable fossilization of biological remains are termed, “taphonomic windows”, wherein signatures of past life may be

With the development and successful landing of the NASA Perseverance rover, there has been growing interest in identifying how evidence of ancient life may be preserved and recognized in the geologic record. Environments that enable fossilization of biological remains are termed, “taphonomic windows”, wherein signatures of past life may be detected. In this dissertation, I have sought to identify taphonomic windows in planetary-analog environments with an eye towards the exploration of Mars. In the first chapter, I describe how evidence of past microbial life may be preserved within serpentinizing systems. Owing to energetic rock-water reactions, these systems are known to host lithotrophic and organotrophic microbial communities. By investigating drill cores from the Samail Ophiolite in Oman, I report morphological and associated chemical biosignatures preserved in these systems as a result of subsurface carbonation. As serpentinites are known to occur on Mars and potentially other planetary bodies, these deposits potentially represent high-priority targets in the exploration for past microbial life. Next, I investigated samples from Atacama Desert, Chile, to understand how evidence of life may be preserved in ancient sediments formed originally in evaporative playa lakes. Here, I describe organic geochemical and morphological evidence of life preserved within sulfate-dominated evaporite rocks from the Jurassic-Cretaceous Tonel Formation and Oligocene San Pedro Formation. Because evaporative lakes are considered to have been potentially widespread on Mars, these deposits may represent additional key targets to search for evidence of past life. In the final chapter, I describe the fossilization potential of surficial carbonates by investigating Crystal Geyser, an active cold spring environment. Here, carbonate minerals precipitate rapidly in the presence of photosynthetic microbial mat communities. I describe how potential biosignatures are initially captured by mineralization, including cell-like structures and microdigitate stromatolites. However, these morphological signatures quickly degrade owing to diagenetic dissolution and recrystallization reactions, as well as textural coarsening that homogenizes the carbonate fabric. Overall, my dissertation underscores the complexity of microbial fossilization and highlights chemically-precipitating environments that may serve as high-priority targets for astrobiological exploration.
ContributorsZaloumis, Jonathan (Author) / Farmer, Jack D (Thesis advisor) / Garcia-Pichel, Ferran (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Ruff, Steven W (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2021
189311-Thumbnail Image.png
Description
Background: Studies have examined student fruit/vegetable (FV) consumption, selection, and waste related to lunch duration and found that longer duration at lunch was associated with greater consumption, selection, and reduced waste. However, few studies have investigated the relationship between time to eat and FVs. The aim of this research is

Background: Studies have examined student fruit/vegetable (FV) consumption, selection, and waste related to lunch duration and found that longer duration at lunch was associated with greater consumption, selection, and reduced waste. However, few studies have investigated the relationship between time to eat and FVs. The aim of this research is to analyze the relationship between objective time to students took to eat (“time to eat”) as it relates to their fruit and vegetable consumption, selection, and plate waste.in elementary, middle, and high schools. Methods: A secondary analysis of cross-sectional study of 37 Arizona schools to discover the differences in the selection, consumption, and waste of FVs from students (Full N = 2226, Elementary N = 630, Middle School N = 699, High School N = 897) using objective time to eat measures. Zero-inflated negative binomial regressions examined differences in FV grams selected, consumed, and wasted adjusted for sociodemographics including race, ethnicity, eligibility for free or reduced lunch, academic year, and sex and clustering for students within schools. Results are presented across school level (elementary, middle, and high school). Results: The average time taken to eat ranged from 10-12 minutes for all students. The association of time to eat and lunch duration were not closely related (r=0.03, p = 0.172). In the count model for every additional minute spent, there was a 0.5% greater likelihood of selecting FVs for elementary kids among those who took any FVs. In the zero-inflated model, it was found that there was a statistically significant relationship between time spent eating and the selection of fruits and vegetables. For the total sample and high schoolers, a minute more of eating time was associated with a 4.3% and 8.8% greater odds of selecting FV. This means that longer eating time increased the likelihood of choosing fruits and vegetables. The results indicated that the longer students took to eat, the higher the likelihood of consuming more of FVs. Each 10 more minutes spent eating (i.e., time to eat) is associated with a 5% increase in grams of FV selected relative to mean (for those that chose FV) over 1 week this equates to 32 g increase of FV selected. However, for middle schoolers, the time to eat was not found to be significant in relation to the grams of fruits and vegetables consumed. There was some significance in the sociodemographic factors such as gender (all) and other (middle school). There was a relationship between time taken to eat and waste as a proportion for fruits and vegetables. For example, among those among the students who wasted something (as a proportion of selection), each additional 10 minutes of eating time was associated with a .6% decrease in waste relative to the mean (for those who chose fruits and vegetables) over a week, resulting in a decrease in waste percentage of 16.5%. Among high schoolers, males had a slightly higher odds of wasting a proportion of fruits and vegetables. Conclusions: This study aimed to examine the association between the time students take to eat during lunch and their fruit and vegetable (FV) consumption, selection, and plate waste. The findings revealed that the time to eat was related to FV consumption, depending on the school level. However, it was not significantly associated with FV selection or waste. The study emphasized the need for further research on time to eat, distinguishing it from the duration of lunch. Longer lunch periods and adequate time could influence better food choices, increased FV consumption, and reduced waste. The study highlighted the importance of interventions and school policies promoting healthier food choices and providing sufficient time for students to eat. Future research should validate these findings and explore the impact of socialization opportunities on promoting healthier eating habits. Understanding the relationship between lunch duration, time to eat, and students' dietary behaviors can contribute to improved health outcomes and inform effective strategies in school settings.
ContributorsDandridge, Christina Marie (Author) / Adams, Marc (Thesis advisor) / Whisner, Corrie (Committee member) / Bruening, Meg (Committee member) / Arizona State University (Publisher)
Created2023
Description

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022.

Maternal morbidity and mortality rates in the United States continues to rise, with a wide range of contributing factors such as mental illness, cardiovascular disease and systemic inequality. This metastudy provides a holistic view of the research that has been published on the issue of U.S. maternal healthcare from 2000-2022. The patterns of publications on specific topics over time can tell us what is perceived as a current major cause by physicians, public leaders, researchers, and the public. A deeper dive into systemic inequality as a cause of maternal morbidity and mortality highlights it as a major contributor to these high rates, but that progress is slowly being made through the implementation of detection and prevention tactics, as well as accessible prenatal programs and care.

ContributorsRettig, Lelia (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2023-05
187723-Thumbnail Image.png
Description
Tools designed to help match people with behaviors they identify as likely to lead to a successful behavioral outcome remain under-researched. This study assessed the effect of a participant-driven behavior-matching intervention on 1) the adoption of a new behavior related to fruit and vegetable (F&V) consumption, 2) study attrition, and

Tools designed to help match people with behaviors they identify as likely to lead to a successful behavioral outcome remain under-researched. This study assessed the effect of a participant-driven behavior-matching intervention on 1) the adoption of a new behavior related to fruit and vegetable (F&V) consumption, 2) study attrition, and 3) changes in F&V consumption. In this two-arm randomized controlled trial, 64 adults who did not meet standard F&V recommendations were allocated to an intervention (n=33) or control group (n=31). Participants in the intervention group ranked 20 F&V-related behaviors according to their perceived likelihood of engagement in the behavior and their perception of the behavior’s efficacy in increasing F&V consumption. Participants in the intervention group were subsequently shown the list of 20 behaviors in order of their provided rankings, with the highest-ranked behaviors at the top, and were asked to choose a behavior they would like to perform daily for 4 weeks. The control group chose from a random-order list of the same 20 behaviors to adopt daily for 4 weeks. During the study period, text messages were sent to all participants 90 minutes before their reported bedtime to collect Yes/No data reflecting successful behavior engagement each day. The binary repeated-measures data collected from the text messages was analyzed using mixed-effects logistic regression, differences in attrition were assessed using log-rank analysis, and change scores in F&V consumption were compared between the two groups using the Man-Whitney U test. P<0.05 indicated significance. The rate of successful behavior adoption did not differ significantly between the two groups (b=0.09, 95%CI= -0.81, 0.98, p=0.85). The log rank test results indicated that there was no significant difference in attrition between the two groups (χ2=2.68, df=1, p=0.10). F&V consumption increased significantly over the 4 weeks in the total sample (Z=-5.86, p<0.001), but no differences in F&V change scores were identified between the control and intervention groups (Z=-0.21, p=0.84). The behavior-matching tool assessed in this study did not significantly improve behavior adoption, study attrition, or F&V intake over 4 weeks.
ContributorsCosgrove, Kelly Sarah (Author) / Wharton, Christopher (Thesis advisor) / Adams, Marc (Committee member) / DesRoches, Tyler (Committee member) / Grebitus, Carola (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2023
187733-Thumbnail Image.png
Description
The study of organismal adaptations oftentimes focuses on specific, constant conditions, but environmental parameters are characterized by more or less marked levels of variability, rather than constancy. This is important in environments like soils where microbial activity follows pulses of water availability driven by precipitation. Nowhere are these pulses more

The study of organismal adaptations oftentimes focuses on specific, constant conditions, but environmental parameters are characterized by more or less marked levels of variability, rather than constancy. This is important in environments like soils where microbial activity follows pulses of water availability driven by precipitation. Nowhere are these pulses more variable and unpredictable than in arid soils. Pulses constitute stressful conditions for bacteria because they cause direct cellular damage that must be repaired and they force cells to toggle between dormancy and active physiological states, which is energetically taxing. I hypothesize that arid soil microorganisms are adapted to the variability in wet/dry cycles itself, as determined by the frequency and duration of hydration pulses. To test this, I subjected soil microbiomes from the Chihuahuan Desert to controlled incubations for a total common growth period of 60 hours, but separated into treatments in which the total active time was reached with hydration pulses of different length with intervening periods of desiccation, so as to isolate pulse length and frequency as the varying factors in the experiment. Using 16S rRNA amplicon data, I characterized changes in microbiome growth, diversity, and species composition, and tracked the individual responses to treatment intensity in the 447 most common bacterial species (phylotypes) in the soil. Considering knowledge of extremophile microbiology, I hypothesized that growth yield and diversity would decline with shorter pulses. I found that microbial diversity was indeed a direct function of pulse length, but surprisingly, total yield was an inverse function of it. Pulse regime treatments resulted in progressively more significant differences in community composition with increasing pulse length, as differently adapted phylotypes became more prominent. In fact, more than 30% of the most common bacterial phylotypes demonstrated statistically significant population growth responses to pulse length. Most responsive phylotypes were apparently best adapted to short pulse regimes (known in the literature as Nimble Responders or NIRs), while fewer did better under long pulse regimes (known as TORs or Torpid Responders). Examples of extreme NIRs and TORs could be found among bacteria from different phyla, indicating that these adaptations have occurred multiple times during evolution.
ContributorsKut, Patrick John (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Sala, Osvaldo (Committee member) / Zhu, Qiyun (Committee member) / Arizona State University (Publisher)
Created2023