Matching Items (139)
135152-Thumbnail Image.png
Description
Genetic counseling is a medical field that was established in the 1970s, but whose demand is now growing exponentially due to modern genetic technology. We now have the ability to look into the human genetic code, detect the genotype of individuals, and use this knowledge to our benefit. However, Genetic

Genetic counseling is a medical field that was established in the 1970s, but whose demand is now growing exponentially due to modern genetic technology. We now have the ability to look into the human genetic code, detect the genotype of individuals, and use this knowledge to our benefit. However, Genetic testing results in a need for new ethical boundaries to be drawn. The idea of the "best possible conditions" of conceiving a child and whether this child has a right to not know are the two major ethical issues that will be focused on in order to analyze the ethical boundary that needs to be drawn for genetic counseling. In order to analyze these ethical issues, a focus group of Arizona State University students was organized. After producing results for the focus group, there are no true conclusions that can be drawn that applied to all of society. The focus group sample size was too small to produce a broad range of results and the participants were all Arizona State University Undergraduate students. However, it did become apparent that knowledge on these ethical issues is crucial in order to ensure they do not hinder the field of genetic counseling. It is predicted that in order to have the best outcome for the field of genetic counseling, genetic counselors themselves need to draw the ethical boundaries for the issues studied.
ContributorsBarker, Samantha (Author) / Amdam, Gro (Thesis director) / Bang, Christofer (Committee member) / Wang, Ying (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
134184-Thumbnail Image.png
Description
Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political

Historically, Supreme Court interpretations of the Constitution of the United States have been significantly important, impacting the lives of every American. This honors thesis seeks to understand the ways in which the Constitution has been interpreted through the lens of political ideology. Using constitutional theory, I explain how the political ideologies of classical liberalism, conservatism, libertarianism, and progressive liberalism have played a role in the interpretations of the First, Second, and Fourth Amendments. I also examine how these ideological interpretations have changed from 1776 to 2017, dividing the history of the United States into four eras: the Founding Era, the Civil War Era, the New Deal Era, and the Modern Era. First, the First Amendment's clauses on religion are examined, where I focus on the separation between church and state as well as the concepts of "establishment" and "free exercise." The First Amendment transitions from classically liberal, to conservative, to progressively liberal and classically liberal, to progressively liberal and libertarian. Next, we look at the Second Amendment's notions of a "militia" and the "right to keep and bear arms." The Second Amendment's interpretations begin classically liberal, then change to classically liberal and progressively liberal, to progressively liberal, to conservative. Finally, the analysis on the Fourth Amendment's "unreasonable searches and seizures" as well as "warrants" lends evidence to ideological interpretations. The Fourth Amendment, like the other two, starts classically liberal for two eras, then becomes libertarian, and finally ends libertarian and conservative. The implications of each of these conclusions are then discussed, with emphasis on public opinion in society during the era in question, the ways in which the ideologies in each era seem to build upon one another, the ideologies of the justices who wrote the opinions, and the ideology of the court.
Created2017-12
161566-Thumbnail Image.png
Description
Objective: Increasing fruit/vegetable (FV) consumption and decreasing waste during the school lunch is a public health priority. Understanding how serving style of FV impacts FV consumption and waste may be an effective means to changing nutrition behaviors in schools. This study examined whether students were more likely to select, consume,

Objective: Increasing fruit/vegetable (FV) consumption and decreasing waste during the school lunch is a public health priority. Understanding how serving style of FV impacts FV consumption and waste may be an effective means to changing nutrition behaviors in schools. This study examined whether students were more likely to select, consume, and waste FV when FVs were cut vs. whole. Methods: Baseline data from the ASU School Lunch Study was used to explore associations between cut vs. whole FV serving style and objectively measured FV selection, consumption, and waste and grade level interactions among a random selection of students (n=6804; 47.8% female; 78.8% BIPOC) attending Arizona elementary, middle, and high schools (N=37). Negative binomial regression models evaluated serving style on FV weight (grams) selected, consumed, and wasted, adjusted for sociodemographics and school. Results: Students were more likely to select cut FVs (IRR=1.11; 95% CI: 1.04, 1.18) and waste cut FVs (IRR=1.20; 95% CI: 1.04, 1.39); however, no differences were observed in the overall consumption of cut vs. whole FVs. Grade-level interactions impacted students’ selection of FVs. Middle school students had a significantly higher effect modification for the selection of cut FVs (IRR=1.18; p=0.006) compared to high school and elementary students. Further, high school students had a significantly lower effect modification for the selection of cut FVs (IRR=0.83; p=0.010) compared to middle and elementary students. No other grade-level interactions were observed. Discussion: Serving style of FV may impact how much FV is selected and wasted, but further research is needed to determine causality between these variables.
ContributorsJames, Amber Chandarana (Author) / Bruening, Meredith (Thesis advisor) / Adams, Marc (Thesis advisor) / Koskan, Alexis (Committee member) / Arizona State University (Publisher)
Created2021
161592-Thumbnail Image.png
Description
Globally, about two-thirds of the population is latently infected with herpes simplex virus type 1 (HSV-1). HSV-1 is a large double stranded DNA virus with a genome size of ~150kbp. Small defective genomes, which minimally contain an HSV-1 origin of replication and packaging signal, arise naturally via recombination during viral

Globally, about two-thirds of the population is latently infected with herpes simplex virus type 1 (HSV-1). HSV-1 is a large double stranded DNA virus with a genome size of ~150kbp. Small defective genomes, which minimally contain an HSV-1 origin of replication and packaging signal, arise naturally via recombination during viral DNA replication. These small defective genomes can be mimicked by constructing a bacterial plasmid containing the HSV-1 origin of replication and packaging signal, transfecting these recombinant plasmids into mammalian cells, and infecting with a replicating helper virus. The absence of most viral genes in the amplicon vector allows large pieces of foreign DNA (up to 150kbp) to be incorporated. The HSV-1 amplicon is replicated and packaged by the helper virus to form HSV-1 particles containing the amplicon DNA. We constructed a novel HSV-1 amplicon vector system containing lambda phage-derived attR sites to facilitate insertion of transgenes by Invitrogen Gateway recombination. To demonstrate that the amplicon vectors work as expected, we packaged the vector constructs expressing Emerald GFP using the replication-competent helper viruses OK-14 or HSV-mScartlet-I-UL25 in Vero cells and demonstrate that the vector stock can subsequently transduce and express Emerald GFP. In further work, we will insert transgenes into the amplicon vector using Invitrogen Gateway recombination to study their functionality.
ContributorsVelarde, Kimberly (Author) / Hogue, Ian B (Thesis advisor) / Manfredsson, Fredric (Committee member) / Sandoval, Ivette (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2021
163973-Thumbnail Image.png
Description

Caracals (Caracal caracal) are a felid species native to regions of southern Africa and western and central Asia. Despite their relatively high prevalence, the majority of research conducted on caracals has been undertaken on captive individuals, which encounter significantly different environments and exhibit different behaviors in comparison to caracals in

Caracals (Caracal caracal) are a felid species native to regions of southern Africa and western and central Asia. Despite their relatively high prevalence, the majority of research conducted on caracals has been undertaken on captive individuals, which encounter significantly different environments and exhibit different behaviors in comparison to caracals in the wild. Thereby, they likely have a vastly different virome. The goal of this study was to identify known and unknown DNA viruses associated with free-ranging caracals. Caracal fecal and organ samples were obtained from a caracal surveillance study undertaken in the Western Cape region of South Africa. Parasitic ticks found feeding on caracals were also obtained. Using a viral metagenomic informed approach, a novel circovirus (family Circoviridae) was detected and characterized in caracal fecal, kidney, spleen, and liver samples, as well as in ticks feeding on the caracals. To our knowledge, this is the first circovirus identified in caracals. The novel circovirus was determined to be closely related to a canine circovirus. These findings expand the knowledge of viral diversity and caracals and are greatly important to caracal conservation efforts as well as conservation efforts of other animals within their ecosystem.

ContributorsCollins, Courtney (Author) / Varsani, Arvind (Thesis director) / Dolby, Greer (Committee member) / Kraberger, Simona (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study

The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study aims to assess the current state of research and identify trends that may guide future investigations. Following the guidelines established by PRISMA, a total sample of 26 research papers were extracted from the electronic databases, PubMed and Scopus. These papers were categorized based on their publication dates, and research questions were formulated regarding three main topics: venom type, cancer-targeting mechanism, and cancer type. Statistical analysis of the research questions was performed using 2x2 contingency tables for a chi-square test. The results of the analysis reveal a statistically significant increase in publications focused on cell death mechanisms and breast cancer in recent years. This increase in publications reflects a growing interest in the potential for venom to induce apoptosis in cancer cells and target the unique biological properties of breast cancer. Overall, this meta-analysis offers insight into the evolving sphere of venom-based cancer research, providing a glimpse into the potential trajectory of this field.
ContributorsHolder, Marina (Author) / Amdam, Gro (Thesis director) / Mana, Miyeko (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2023-12
Description
Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and

Weight stigma is a prevalent issue that has detrimental effects on health for both adolescents and parents. Adolescents are in a formative stage of life, so it is important to understand how parents may impact adolescents’ own experience with weight stigma. Past research has examined adolescent coping, body image, and associated stigma in the context of the parent-child relationship. This cross-sectional study examined self-reported weight stigma experience and internalization within 42 parent/adolescent dyads to provide greater understanding of how adolescents and parents are experiencing and internalizing weight stigma independently and transversely.
ContributorsMillett, Emma (Author) / McEntee, Mindy (Thesis director) / Adams, Marc (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-12
171365-Thumbnail Image.png
Description
Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically

Scientists are entrusted with developing novel molecular strategies for effective prophylactic and therapeutic interventions. Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative potential in healthcare, to date, antivirals have been clinically approved to treat only 10 out of the greater than 200 known pathogenic human viruses. Additionally, as obligate intracellular parasites, many virus functions are intimately coupled with host cellular processes. As such, the development of a clinically relevant antiviral is challenged by the limited number of clear targets per virus and necessitates an extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. Therefore, a means to develop virus- or strain-specific antivirals without detailed insight into each idiosyncratic biochemical mechanism may aid in the development of antivirals against a larger swath of pathogens. Such an approach will tremendously benefit from having the specific molecular recognition of viral species as the lowest barrier. Here, I modify a nanobody (anti-green fluorescent protein) that specifically recognizes non-essential epitopes (glycoprotein M-pHluorin chimera) presented on the extra virion surface of a virus (Pseudorabies virus strain 486). The nanobody switches from having no inhibitory properties (tested up to 50 μM) to ∼3 nM IC50 in in vitro infectivity assays using porcine kidney (PK15) cells. The nanobody modifications use highly reliable bioconjugation to a three-dimensional wireframe deoxyribonucleic acid (DNA) origami scaffold. Mechanistic studies suggest that inhibition is mediated by the DNA origami scaffold bound to the virus particle, which obstructs the internalization of the viruses into cells, and that inhibition is enhanced by avidity resulting from multivalent virus and scaffold interactions. The assembled nanostructures demonstrate negligible cytotoxicity (<10 nM) and sufficient stability, further supporting their therapeutic potential. If translatable to other viral species and epitopes, this approach may open a new strategy that leverages existing infrastructures – monoclonal antibody development, phage display, and in vitro evolution - for rapidly developing novel antivirals in vivo.
ContributorsPradhan, Swechchha (Author) / Hariadi, Rizal (Thesis advisor) / Hogue, Ian (Committee member) / Varsani, Arvind (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2022