Matching Items (357)
141492-Thumbnail Image.png
Description

Background: Vitamin/mineral supplements are among the most commonly used treatments for autism, but the research on their use for treating autism has been limited.

Method: This study is a randomized, double-blind, placebo-controlled three month vitamin/mineral treatment study. The study involved 141 children and adults with autism, and pre and post symptoms of autism

Background: Vitamin/mineral supplements are among the most commonly used treatments for autism, but the research on their use for treating autism has been limited.

Method: This study is a randomized, double-blind, placebo-controlled three month vitamin/mineral treatment study. The study involved 141 children and adults with autism, and pre and post symptoms of autism were assessed. None of the participants had taken a vitamin/mineral supplement in the two months prior to the start of the study. For a subset of the participants (53 children ages 5-16) pre and post measurements of nutritional and metabolic status were also conducted.

Results: The vitamin/mineral supplement was generally well-tolerated, and individually titrated to optimum benefit. Levels of many vitamins, minerals, and biomarkers improved/increased showing good compliance and absorption. Statistically significant improvements in metabolic status were many including: total sulfate (+17%, p = 0.001), S-adenosylmethionine (SAM; +6%, p = 0.003), reduced glutathione (+17%, p = 0.0008), ratio of oxidized glutathione to reduced glutathione (GSSG:GSH; -27%, p = 0.002), nitrotyrosine (-29%, p = 0.004), ATP (+25%, p = 0.000001), NADH (+28%, p = 0.0002), and NADPH (+30%, p = 0.001). Most of these metabolic biomarkers improved to normal or near-normal levels. The supplement group had significantly greater improvements than the placebo group on the Parental Global Impressions-Revised (PGI-R, Average Change, p = 0.008), and on the subscores for Hyperactivity (p = 0.003), Tantrumming (p = 0.009), Overall (p = 0.02), and Receptive Language (p = 0.03). For the other three assessment tools the difference between treatment group and placebo group was not statistically significant. Regression analysis revealed that the degree of improvement on the Average Change of the PGI-R was strongly associated with several biomarkers (adj. R[superscript 2] = 0.61, p < 0.0005) with the initial levels of biotin and vitamin K being the most significant (p < 0.05); both biotin and vitamin K are made by beneficial intestinal flora.

Conclusions: Oral vitamin/mineral supplementation is beneficial in improving the nutritional and metabolic status of children with autism, including improvements in methylation, glutathione, oxidative stress, sulfation, ATP, NADH, and NADPH. The supplement group had significantly greater improvements than did the placebo group on the PGI-R Average Change. This suggests that a vitamin/mineral supplement is a reasonable adjunct therapy to consider for most children and adults with autism.

ContributorsAdams, James (Author) / Audhya, Tapan (Author) / McDonough-Means, Sharon (Author) / Rubin, Robert A. (Author) / Quig, David (Author) / Geis, Elizabeth (Author) / Gehn, Eva (Author) / Loresto, Melissa (Author) / Mitchell, Jessica (Author) / Atwood, Sharon (Author) / Barnhouse, Suzanne (Author) / Lee, Wondra (Author) / Autism/Asperger's Research Program (Contributor)
Created2011-12-12
141495-Thumbnail Image.png
Description

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrin (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π* transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D4h symmetry at ground state, a C4v symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.

ContributorsTheisen, Rebekah (Author) / Huang, Liang (Author) / Fleetham, Tyler (Author) / Adams, James (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-07
141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
133473-Thumbnail Image.png
Description
Laboratory animals represent an invaluable, yet controversial, resource in the field of biomedical research. Animal research has been behind many influential discoveries in the field of emerging therapeutics. They provide the link between the theory of the lab bench and the functional application of medicine to influence human health. The

Laboratory animals represent an invaluable, yet controversial, resource in the field of biomedical research. Animal research has been behind many influential discoveries in the field of emerging therapeutics. They provide the link between the theory of the lab bench and the functional application of medicine to influence human health. The use of animals in research is a consideration which must be heavily weighed, and the implementation must be carried out at a very high standard in order to retain research integrity and responsibility. We are in the process of conducting an experiment using laboratory mice to demonstrate cancer treatment using vaccinia (VACV) mutants as a possible oncolytic therapy for certain strains of melanoma. VACV is a double-stranded DNA poxvirus with a large and easily altered genome. This virus contains many genes dedicated to immune evasion, but has shown sensitivity to cell death by necroptosis in mouse studies (5). We have identified the absence of the kinase RIP3 which is vital in the necroptosis pathway as a potential target for oncolytic therapy using VACV mutants in specific strains of melanoma. Multiple groups of SCID Beige mice were inoculated with different melanoma cell lines and observed for tumor growth. Upon reaching 1 cm3 in volume, tumors were injected with either VACV- Δ83N, VACV- Δ54N, or PBS, and observed for regression. It was hypothesized that melanoma tumors that are RIP3-/- such as the MDA5 cell line will show regression, but melanoma tumors that are RIP3-positive and capable of necroptosis, such as the 2427 cell line, will resist viral replication and continue to proliferate. Our results so far tentatively support this hypothesis, but the data collection is ongoing. Strict and specific protocols with regard to the ethical and responsible use of mice have been implemented and upheld throughout the experiment. Animals are closely monitored, and if their quality of life becomes too poor to justify their continued use in the experiment, they are humanely euthanized, even at the expense of valuable data. The importance of commitment to a high ethical standard is pervasive throughout our work. Animals represent an invaluable contribution to research, and it is important to maintain high standards and transparency with regard to their use. Education and engagement in critical discussions about the use and care of animals in the laboratory contribute to the overall merit and legitimacy of biomedical research in the public and professional eye as a whole, and give legitimacy to the continued use of animals as models to advance science and health.
ContributorsBergamaschi, Julia (Author) / Kibler, Karen (Thesis director) / Jacobs, Bertram (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133476-Thumbnail Image.png
Description
For this project, I use qualitative textual analysis to compare the differences and/or similarities between (1) how the former residents of Tempe’s historic San Pablo barrio (1872-1955) conveyed their sense of place, meaning, and displacement in oral and written histories and (2) how Tempe’s Anglo residents at the time of

For this project, I use qualitative textual analysis to compare the differences and/or similarities between (1) how the former residents of Tempe’s historic San Pablo barrio (1872-1955) conveyed their sense of place, meaning, and displacement in oral and written histories and (2) how Tempe’s Anglo residents at the time of San Pablo’s occupation and dissolution conveyed their sense of the place, meaning, and displacement of San Pablo in newspaper articles. I have located my investigation of any perceived or lacking disparities between how these two groups perceived San Pablo’s place and meaning within the context of San Pablo’s dissolution and the displacement of its residents in the mid 1950s. As I follow the process through which some communities are able to suppress, take over, and erase others from dominant narratives and political decisions without any perceived consequences, I will bring to the foreground the emotional impact of place and displacement in order to highlight how the former residents of ‘erased’ communities make sense of and respond to their displacement.
ContributorsRoberson, Jessica Bridges (Author) / Michelaki, Konstantina-Eleni (Thesis director) / Toon, Richard (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Social Transformation (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133248-Thumbnail Image.png
Description
The story of graphene truly began in what was simply a stub in the journal Physical Review not two years after the end of World War II. In 1947, McGill University physicist P.R. Wallace authored “The Band Theory of Graphite” and attempted to develop a foundation on which the structure-property

The story of graphene truly began in what was simply a stub in the journal Physical Review not two years after the end of World War II. In 1947, McGill University physicist P.R. Wallace authored “The Band Theory of Graphite” and attempted to develop a foundation on which the structure-property relationship of graphite could be explored; he calculates the number of free electrons and conductivity of what he describes as “a single hexagonal layer” and “suppos[es] that conduction takes place only in layers” in bulk graphite to predict wave functions, energies at specific atomic sites in the hexagonal lattice, and energy contours using a tight binding approximation for a hypothesized version of what we now call ‘armchair-style’ graphene. While Wallace was the first to explore the band structure and Brillouin Zones of single-layer graphite, the concept of two-dimensional materials was not new. In fact, for years, it was dismissed as a thermodynamic impossibility.

Everything seemed poised against any proposed physical and experimental stability of a structure like graphene. “Thermodynamically impossible”– a not uncommon shutdown to proposed novel physical or chemical concepts– was once used to describe the entire field of proposed two-dimensional crystals functioning separately from a three-dimensional base or crystalline structure. Rudolf Peierls and Lev Davoidovich Landau, both very accomplished physicists respectively known for the Manhattan Project and for developing a mathematical theory of helium superfluidity, rejected the possibility of isolated monolayer to few-layered crystal lattices. Their reasoning was that diverging thermodynamic-based crystal lattice fluctuations would render the material unstable regardless of controlled temperature. This logic is flawed, but not necessarily inaccurate– diamond, for instance, is thermodynamically metastable at room temperature and pressure in that there exists a slow (i.e. slow on the scale of millions of years) but continuous transformation to graphite. However, this logic was used to support an explanation of thermodynamic impossibility that was provided for graphene’s lack of isolation as late as 1979 by Cornell solid-state physicist Nathaniel David Mermin. These physicists’ claims had clear and consistent grounding in experimental data: as thin films become thinner, there exists a trend of a decreasing melting temperature and increasing instability that renders the films into islands at somewhere around ten to twenty atomic layers. This is driven by the thermodynamically-favorable minimization of surface energy.
ContributorsShulman, Neal Arthur (Author) / Adams, James (Thesis director) / Islam, Rafiqul (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and severities, affecting communication, behavior, and social interactions. With the prevalence of ASD rising to affect nearly 1 in 36 children in the United States, understanding and addressing the multifaceted needs of those with

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and severities, affecting communication, behavior, and social interactions. With the prevalence of ASD rising to affect nearly 1 in 36 children in the United States, understanding and addressing the multifaceted needs of those with ASD is increasingly critical. This review explores the interplay between genetic, environmental, and immune factors in the onset of ASD, focusing on metabolic dysfunctions and the role of the gut-brain axis. Emerging research highlights the significance of abnormal metabolites and gut microbiota imbalances in contributing to the pathophysiology of ASD, suggesting that these factors may influence neurological function and behavior through modulating immune responses. Recent analyses have uncovered metabolic disturbances in ASD, affecting amino acid metabolism, glutathione metabolism, glycolysis and the TCA cycle, homocysteine metabolism, ketone body synthesis, and lipid metabolism. These disturbances offer insights into how metabolic dysfunctions may contribute to the neurological and behavioral features of ASD. Furthermore, the gut microbiota's role in immune responses and the controversial impact of antibiotic use on gut flora composition is important to the complexity of ASD and the need for a nuanced understanding of treatment effects. This review delves into the current understanding of metabolic dysfunctions in children with ASD, emphasizing the critical role of gut microbiota and the impact of antibiotic use. Specifically, this review discusses SCFAs, para-cresol, amino acid metabolites, and glutathione and their respective specific treatments. It also explores the potential of vitamin/mineral supplementation as a therapeutic strategy, highlighting significant improvements in metabolic markers and behavioral symptoms associated with ASD. The findings from key studies, including those by Adams et al., suggest that targeted nutritional interventions and careful management of gut health could offer promising avenues for improving the quality of life for individuals with ASD. The review also acknowledges the need for further research to confirm the long-term effects of these interventions and to develop personalized treatment approaches that consider the unique needs in individuals with ASD.
ContributorsNandakumar, Keshav (Author) / Adams, James (Thesis director) / Flynn, Christina (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2024-05