Matching Items (132)
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150301-Thumbnail Image.png
Description
This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice

This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice matching with ZnSnP2, the other component in this tandem device. This work is divided into two main chapters, which will cover: calculations and method to determine the formation energy and abundance of native point defects, and a model to calculate the vapor pressure over a ternary material from first-principles. The purpose of this work is to guide experimental work being done in tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such that it can be used as a photovoltaic. Since properties of photovoltaic depend greatly on defect concentrations and film quality, a theoretical understanding of how laboratory conditions affect these properties is very valuable. The work done here is from first-principles and utilizes density functional theory using the local density approximation. Results from the native point defect study show that the zinc vacancy (VZn) and the germanium antisite (GeZn) are the more prominent defects; which most likely produce non-stoichiometric films. The vapor pressure model for a ternary system is validated using known vapor pressure for monatomic and binary test systems. With a valid ternary system vapor pressure model, results show there is a kinetic barrier to decomposition for ZnGeAs2.
ContributorsTucker, Jon R (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Newman, Nathan (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2011
137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
ContributorsWegner, Scott Andrew (Author) / Olive, M. Foster (Thesis director) / Presson, Clark (Committee member) / Sanabria, Federico (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2013-05
152284-Thumbnail Image.png
Description
Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at

Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at higher current densities and elevated temperatures. Gold-based metallization was implemented on GaAs devices because it uniquely forms a very low resistance ohmic contact and gold interconnects have superior electrical and thermal conductivity properties. Gold (Au) was also believed to have improved resistance to electromigration due to its higher melting temperature, yet electromigration reliability data on passivated Au interconnects is scarce and inadequate in the literature. Therefore, the objective of this research was to characterize the electromigration lifetimes of passivated Au interconnects under precisely controlled stress conditions with statistically relevant quantities to obtain accurate model parameters essential for extrapolation to normal operational conditions. This research objective was accomplished through measurement of electromigration lifetimes of large quantities of passivated electroplated Au interconnects utilizing high-resolution in-situ resistance monitoring equipment. Application of moderate accelerated stress conditions with a current density limited to 2 MA/cm2 and oven temperatures in the range of 300°C to 375°C avoided electrical overstress and severe Joule-heated temperature gradients. Temperature coefficients of resistance (TCRs) were measured to determine accurate Joule-heated Au interconnect film temperatures. A failure criterion of 50% resistance degradation was selected to prevent thermal runaway and catastrophic metal ruptures that are problematic of open circuit failure tests. Test structure design was optimized to reduce resistance variation and facilitate failure analysis. Characterization of the Au microstructure yielded a median grain size of 0.91 ìm. All Au lifetime distributions followed log-normal distributions and Black's model was found to be applicable. An activation energy of 0.80 ± 0.05 eV was measured from constant current electromigration tests at multiple temperatures. A current density exponent of 1.91 was extracted from multiple current densities at a constant temperature. Electromigration-induced void morphology along with these model parameters indicated grain boundary diffusion is dominant and the void nucleation mechanism controlled the failure time.
ContributorsKilgore, Stephen (Author) / Adams, James (Thesis advisor) / Schroder, Dieter (Thesis advisor) / Krause, Stephen (Committee member) / Gaw, Craig (Committee member) / Arizona State University (Publisher)
Created2013
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
152325-Thumbnail Image.png
Description
The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. For instance, chronic stress produces dendritic retraction in the hippocampus and mPFC, but dendritic hypertrophy in the amygdala, consistent with functional imaging in patients with PTSD. Some have hypothesized that these limbic region's modifications contribute to one's susceptibility to develop PTSD following a traumatic event. Consequently, we used a familiar chronic stress procedure in a rat model to create a vulnerable brain that might develop traits consistent with PTSD when presented with a challenge. In adult male rats, chronic stress by wire mesh restraint (6h/d/21d) was followed by a variety of behavioral tasks including radial arm water maze (RAWM), fear conditioning and extinction, and fear memory reconsolidation to determine chronic stress effects on behaviors mediated by these limbic structures. In chapter 2, we corroborated past findings that chronic stress caused hippocampal CA3 dendritic retraction. Importantly, we present new findings that CA3 dendritic retraction corresponded with poor spatial memory in the RAWM and that these outcomes reversed after a recovery period. In chapter 3, we also showed that chronic stress impaired mPFC-mediated extinction memory, findings that others have reported. Using carefully assessed behavior, we present new findings that chronic stress impacted nonassociative fear by enhancing contextual fear during extinction that generalized to a new context. Moreover, the generalization behavior corresponded with enhanced functional activation in the hippocampus and amygdala during fear extinction memory retrieval. In chapter 5, we showed for the first time that chronic stress enhanced amygdala functional activation during fear memory retrieval, i.e., reactivation. Moreover, these enhanced fear memories were resistant to protein synthesis interference to disrupt a previously formed memory, called reconsolidation in a novel attempt to weaken chronic stress enhanced traumatic memory. Collectively, these studies demonstrated the plastic and dynamic effects of chronic stress on limbic neurocircuitry implicated in PTSD. We showed that chronic stress created a structural and functional imbalance across the hippocampus, mPFC, and amygdala, which lead to a PTSD-like phenotype with persistent and exaggerated fear following fear conditioning. These behavioral disruptions in conjunction with morphological and functional imaging data reflect a chronic stress-induced imbalance between hippocampal and mPFC regulation in favor of amygdala function overdrive, and supports a novel approach for traumatic memory processing in PTSD.
ContributorsHoffman, Ann (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Hammer, Jr., Ronald P. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2013
151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
152101-Thumbnail Image.png
Description
This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included

This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included in research related to children with ASD, and there is only limited services available for them. This exploratory study (n=6) is aimed at better understanding the siblings' lives in their family settings in order to identify the siblings' unmet needs and determine how they have been influenced by the child with ASD. This study is also aimed at identifying the most appropriate support for the siblings to help them cope better. The study followed the Resiliency Model of Family Stress, Adjustment, and Adaptation and a narrative theory approach. An in-depth interview with the parents was conducted for the study, so the findings reflect the parents' perception of the siblings. All the themes emerged into two categories: life in the family setting and supports. The findings indicate that the families are striving for balance between the siblings and the children with ASD, but still tend to focus more on the children with ASD. Also, the families tend to have autonomous personal support systems. The parents tend to perceive that these personal support systems are good enough for the siblings; therefore, the parents do not feel that formal support for the siblings was necessary. As a result of the findings, recommendations are made for the organizations that work with individuals with ASD to provide more appropriate services for the families of children with ASD, including siblings. Also, recommendations are made for future studies to clarify more factors related to the siblings due to the limitation of this study; the siblings' lives were reflected vicariously via the parents.
ContributorsJeong, Seong Hae (Author) / Marsiglia, Flavio F (Thesis advisor) / Ayers, Stephanie (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2013
152394-Thumbnail Image.png
Description
The development of the vertebrate musculoskeletal system is a highly dynamic process, requiring tight control of the specification and patterning of myogenic, chondrogenic and tenogenic cell types. Development of the diverse musculoskeletal lineages from a common embryonic origin in the paraxial mesoderm indicates the presence of a regulatory network of

The development of the vertebrate musculoskeletal system is a highly dynamic process, requiring tight control of the specification and patterning of myogenic, chondrogenic and tenogenic cell types. Development of the diverse musculoskeletal lineages from a common embryonic origin in the paraxial mesoderm indicates the presence of a regulatory network of transcription factors that direct lineage decisions. The basic helix-loop-helix transcription factor, PARAXIS, is expressed in the paraxial mesoderm during vertebrate somitogenesis, where it has been shown to play a critical role in the mesenchymal-to-epithelial transition associated with somitogenesis, and the development of the hypaxial skeletal musculature and axial skeleton. In an effort to elucidate the underlying genetic mechanism by which PARAXIS regulates the musculoskeletal system, I performed a microarray-based, genome-wide analysis comparing transcription levels in the somites of Paraxis-/- and Paraxis+/+ embryos. This study revealed targets of PARAXIS involved in multiple aspects of mesenchymal-to-epithelial transition, including Fap and Dmrt2, which modulate cell-extracellular matrix adhesion. Additionally, in the epaxial dermomyotome, PARAXIS activates the expression of the integrin subunits a4 and a6, which bind fibronectin and laminin, respectively, and help organize the patterning of trunk skeletal muscle. Finally, PARAXIS activates the expression of genes required for the epithelial-to-mesenchymal transition and migration of hypaxial myoblasts into the limb, including Lbx1 and Met. Together, these data point to a role for PARAXIS in the morphogenetic control of musculoskeletal patterning.
ContributorsRowton, Megan (Author) / Rawls, Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2013