Matching Items (119)
135270-Thumbnail Image.png
Description
The work for this thesis was done in conjunction to that of my capstone project, which focused on understanding the effects of powder re-use on products built via Direct Metal Laser Sintering (DMLS), a specific additive manufacturing (AM) technique where powder particles are sintered together to form final parts. Honeywell

The work for this thesis was done in conjunction to that of my capstone project, which focused on understanding the effects of powder re-use on products built via Direct Metal Laser Sintering (DMLS), a specific additive manufacturing (AM) technique where powder particles are sintered together to form final parts. Honeywell Aerospace helped support this research by providing materials and mentorship; this work will play a key role in their decision to implement DMLS and other AM methods on a larger scale. Whereas the capstone focuses on the technical details of constructing characterization equipment, analyzing data, and formulating a concluding recommendation on whether the powder can be re-used, the thesis attempts to put this body of work in its greater context, surveying the economic and environmental effects of additive manufacturing technologies with a slant towards the aerospace industry. Shifts in the supply chain with aircraft parts and how this affects costs are explored, as well as how the quality and reliability of additively manufactured parts differs from their traditionally manufactured counterparts and the effects of this on related industries and purchasers.
ContributorsMurella, Anoosha Sainagaki (Author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The goal of the paper was to examine the fatigue mechanisms of polymers and silicone based elastomers. The mechanisms of fatigue due to crazing: the alignment of polymer chains to the stress axis, and shear banding: the localized orientation of the polymer by the shear stresses from two planes, were

The goal of the paper was to examine the fatigue mechanisms of polymers and silicone based elastomers. The mechanisms of fatigue due to crazing: the alignment of polymer chains to the stress axis, and shear banding: the localized orientation of the polymer by the shear stresses from two planes, were discussed in depth in this paper. Crazing only occurs in tensile stress, is initiated on the surface of the material, and only occurs in brittle polymers. Crazing also accounts for a 40-60% decrease in density, causing localized weakening of the material and a concentration in stress. This is due to a decrease in effective cross sectional area. The mechanism behind discontinuous growth bands was also discussed to be the cause of cyclic crazing. Shear banding only occurs in ductile polymers and can result in the failure of polymers via necking. Furthermore, the high fatigue resistance of silicone elastomers was discussed in this paper. This conclusion was made because of the lack of fatigue mechanisms (crazing, discontinuous growth bands, and shears banding) in the observed elastomer's microstructure after the samples had undergone fatigue tests. This was done through an analysis of room temperature vulcanized silicone adhesives, a heat-curing silicone elastomer, and a self-curing transparent silicone rubber. Fatigue of room temperature vulcanized silicon was observed, however this was reasoned to be the failure of the adhesion of the elastomer to the steel substrate instead of the microstructure itself. Additionally, the significance of fatigue in real world applications was discussed using SouthWest Airlines Flight 812 as an example.
ContributorsWong, Christopher Stanley (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134507-Thumbnail Image.png
Description
Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic

Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic factors may help explain the biological mechanisms underlying diabetes risk reduction following lifestyle changes. MicroRNAs (miRNAs) are small, non-coding RNA’s that regulate gene expression and have emerged as potential biomarkers for predicting type 2 diabetes risk in adults but have yet to be applied to youth. Therefore, the purpose of this study was to identify changes in miRNA expression among Latino youth with prediabetes (4 female/2 male, ages 14-16, BMI percentile 99 ±.2) who participated in a 12-week lifestyle intervention focused on increasing physical activity and improving nutrition-related behaviors.
ContributorsKarch, Jamie (Co-author) / Day, Samantha (Co-author) / Shaibi, Gabriel (Thesis director) / Coletta, Dawn (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
171777-Thumbnail Image.png
Description
Organic light-emitting diodes (OLEDs) have been successfully implemented in various display applications owing to rapid advancements in material design and device architecture. Their success in the display industry has ignited a rising interest in applying OLEDs for solid-state lighting applications through the development of white OLEDs (WOLEDs). However, to enter

Organic light-emitting diodes (OLEDs) have been successfully implemented in various display applications owing to rapid advancements in material design and device architecture. Their success in the display industry has ignited a rising interest in applying OLEDs for solid-state lighting applications through the development of white OLEDs (WOLEDs). However, to enter the market as a serious competitor, WOLEDs must achieve excellent color quality, high external quantum efficiency (EQE) as well as a long operational lifetime. In this research, novel materials and device architectures were explored to improve the performance of single-stack WOLEDs. A new Pt-based phosphorescent emitter, Pt2O2-p2m, was examined as a single emissive emitter for the development of a stable and efficient single-doped WOLED. A bilayer structure was employed to balance the charges carriers within the emissive layer resulting in low efficiency roll-off at high brightness, realizing a peak EQE of 21.5% and EQEs of 20% at 1000 cd m-2 and 15.3% at 7592 cd m-2. A novel phosphorescent/fluorescent, or hybrid, WOLED device architecture was also proposed. To gather a thorough understanding of blue fluorescent OLEDs prior to its use in a WOLED, a study was conducted to investigate the impact of the material selection on the device performance. The use of an anthracene type host demonstrated an improvement to the operational stability of the blue OLED by reducing the occurrence of degradation events. Additionally, various dopant concentrations and blocking materials revealed vastly different efficiency and lifetime results. Finally, a Pd (II) complex, Pd3O8-Py5, with efficient amber-colored aggregate emission was employed to produce a WOLED. Various host materials were investigated to achieve balanced white emission and the addition of an interlayer composed of a high triplet energy material was used to reduce quenching effects. Through this strategy, a color stable WOLED device with a peak EQE of 45% and an estimated LT95 over 50,000 hours at 1000 cd m-2 was realized. The comprehensive performance of the proposed device architecture competes with WOLED devices that are commercially available and reported within the literature domain, providing a strong foundation to further advance the development of highly efficient and stable single-stack WOLEDs.
ContributorsAmeri, Lydia (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2022
168680-Thumbnail Image.png
Description
This study examined perception of K12 schooling systems as experienced by a randomsample of adults in Phoenix, AZ. It explored whether the values purported as key factors in the American K12 schooling system - as presented in academic literature - were compatible with the lives, interests and goals of ‘users’, student-participants.

This study examined perception of K12 schooling systems as experienced by a randomsample of adults in Phoenix, AZ. It explored whether the values purported as key factors in the American K12 schooling system - as presented in academic literature - were compatible with the lives, interests and goals of ‘users’, student-participants. In addition, it offered opportunity for post-K12 student-participants to share their views on the purposes, goals, and outcomes they held to be important. The sample consisted of 139 post-K12 stu- dents/individuals residing in Phoenix, AZ. Mean age of student-participants was 29. Results indicated a mismatch between purported K12 schooling goals and important outcomes embedded in the system and values held by the K12 student-participants. The participants in this research generally perceived K12 schooling as valuable, both to themselves and to society at large, but stressed that the deficiencies they perceived in the system were particular to delivery platforms as they relate to the learning styles of students and belonging. Future life skills and success - in and after K12 schooling - whether related to college or not were also of importance. Results revealed that the initial hypothesis of income, age, and ethnicity as key factors in satisfaction with K12 schooling was not borne-out. Rather it revealed that a sense of belonging and the suitability of learning platforms to the individual learning styles of students were of greatest significance.
ContributorsParker-Anderies, Margaret (Author) / Janssen, Marco (Thesis advisor) / Garcia, David (Committee member) / Mishra, Punya (Committee member) / Arizona State University (Publisher)
Created2022
Description

Sulfate deficiency is seen in children with autism through increased urinary excretion of sulfate and low plasma sulfate levels. Potential factors impacting reduced sulfation include phenosulfotransferase activity, sulfate availability, and the presence of the gut toxin p-cresol. Epsom salt baths, vitamin supplementation, and fecal microbiota transplant therapy are all potential

Sulfate deficiency is seen in children with autism through increased urinary excretion of sulfate and low plasma sulfate levels. Potential factors impacting reduced sulfation include phenosulfotransferase activity, sulfate availability, and the presence of the gut toxin p-cresol. Epsom salt baths, vitamin supplementation, and fecal microbiota transplant therapy are all potential treatments with promising results. Sulfate levels have potential for use as a diagnostic biomarker, allowing for earlier diagnosis and intervention.

ContributorsErickson, Payton (Author) / Adams, James (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
Description

The Healthy Pregnancy Summit is a collection of videos from a variety of specialists detailing how to have a healthy pregnancy and healthy child, based on the latest scientific and medical information. This project summarizes each presentation, and compares to the Healthy Child Guide, a document supplementary to the summit.

The Healthy Pregnancy Summit is a collection of videos from a variety of specialists detailing how to have a healthy pregnancy and healthy child, based on the latest scientific and medical information. This project summarizes each presentation, and compares to the Healthy Child Guide, a document supplementary to the summit. Finally, this project analyzes the overall usefulness of the summit and each presentation, and suggests areas for improvement.

ContributorsKragenbring, Kylee (Author) / Adams, James (Thesis director) / Matthews, Julie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
168511-Thumbnail Image.png
Description
The consumption of food, energy, and water (FEW) resources in U.S. households is very carbon-intensive. However, these negative climate change impacts are often invisible due to insufficient awareness and knowledge. Serious games (SGs) can potentially address this issue through an experiential and rigorous approach to simulate household actions and impacts

The consumption of food, energy, and water (FEW) resources in U.S. households is very carbon-intensive. However, these negative climate change impacts are often invisible due to insufficient awareness and knowledge. Serious games (SGs) can potentially address this issue through an experiential and rigorous approach to simulate household actions and impacts in a playful but realistic setting. This dissertation focuses on: (a) the design and testing of an SG called HomeRUN (Role-play for Understanding Nexus); (b) the effectiveness of gameplay in advancing player knowledge about the upfront costs, financial returns, and greenhouse gas (GHG) emissions of various household decisions; and (c) the effectiveness of intervention messages in increasing FEW conservation to reduce household GHG emissions. The results of gameplay sessions played by 150 university students show that HomeRUN is fun to play, creates a flow experience, and results in experiential learning. The majority of players agreed that the game experience will continue over time to influence their future consumption behaviors to conserve FEW resources. Female players tended to gain more knowledge about financial aspects of interventions, whereas male players were more likely to increase their understandings of GHG emissions and resource consumption after playing HomeRUN. Social comparison intervention messages about energy and food consumption led to the highest reductions in household carbon emissions. The messages associated with each FEW resource tended to be most likely to lead to FEW conservation actions with the game that most closely corresponded to the particular FEW resource addressed in the message. This dissertation advances understandings about the design and use of SGs to foster learning and promote sustainable household FEW consumption.
ContributorsHanif, Muhammad Adnan (Author) / Agusdinata, Datu Buyung (Thesis advisor) / Halvorsen, Kathleen (Committee member) / Janssen, Marco (Committee member) / Arizona State University (Publisher)
Created2021
161961-Thumbnail Image.png
Description
Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient

Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient and stable electronics. The development of efficient and stable deep blue OLED devices remains a challenge that has obstructed the progress of large-scale OLED commercialization. One approach was taken to achieve a deep blue emitter through a color tuning strategy. A new complex, PtNONS56-dtb, was designed and synthesized by controlling the energy gap between T1 and T2 energy states to achieve narrowed and blueshifted emission spectra. This emitter material showed an emission spectrum at 460 nm with a FWHM of 59 nm at room temperature in PMMA, and the PtNONS56-dtb-based device exhibited a peak EQE of 8.5% with CIE coordinates of (0.14, 0.27). A newly developed host and electron blocking materials were demonstrated to achieve efficient and stable OLED devices. The indolocarbazole-based materials were designed to have good hole mobility and high triplet energy. BCN34 as an electron blocking material achieved the estimated LT80 of 12509 h at 1000 cd m-2 with a peak EQE of 30.3% in devices employing Pd3O3 emitter. Additionally, a device with bi-layer emissive layer structure, using BCN34 and CBP as host materials doped with PtN3N emitter, achieved a peak EQE of 16.5% with the LT97 of 351 h at 1000 cd m-2. A new neuromorphic device using Ru(bpy)3(PF6)2 as an active layer was designed to emulate the short-term characteristics of a biological synapse. This memristive device showed a similar operational mechanism with biological synapse through the movement of ions and electronic charges. Furthermore, the performance of the device showed tunability by adding salt. Ultimately, the device with 2% LiClO4 salt shows similar timescales to short-term plasticity characteristics of biological synapses.
ContributorsShin, Samuel (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
168283-Thumbnail Image.png
Description
Over the past three decades, significant progress in the development of organic light-emitting diodes (OLEDs) has been achieved, enabling OLEDs to become a main component in state-of-the-art displays and next generation solid-state lighting. As this technology advances, it is highly desirable to further improve the device efficiency and operational stability

Over the past three decades, significant progress in the development of organic light-emitting diodes (OLEDs) has been achieved, enabling OLEDs to become a main component in state-of-the-art displays and next generation solid-state lighting. As this technology advances, it is highly desirable to further improve the device efficiency and operational stability to drive the success of OLEDs in future display and lighting applications. This dissertation aims at developing novel organic emitting materials covering visible and near-infrared (NIR) emissions for efficient and table OLEDs. Firstly, a series of tetradentate Pd(II) complexes, which have attractive phosphorescent aggregate emission performance especially at high brightness level in device settings, have been developed. The luminescent lifetime of Pd(II) complex aggregates was demonstrated to be shorter than 1 μs with a close-to-unity photoluminescence quantum yield. Moreover, a systematic study regarding structure-property relationship was conducted on four tetradentate Pd(II) complexes, i.e., Pd3O3, Pd3O8-P, Pd3O8-Py2, and Pd3O8-Py5, featuring aggregate emission. As a result, an extremely efficient and stable OLED device utilizing Pd3O8-Py5 was achieved. It demonstrated a peak external quantum efficiency (EQE) of 37.3% with a reduced efficiency roll-off retaining a high EQE of 32.5% at 10000 cd m-2, and an estimated LT95 lifetime (time to 95% of the initial luminance) of 48246 h at 1000 cd m-2. Secondly, there is an increasing demand for NIR OLEDs with emission spectra beyond 900 nm to expand their applications in biometric authentication, night vision display, and telecommunication, etc. A stable and efficient NIR Pt(II) porphyrin complex named PtTPTNP-F8 was developed, and exhibited an electroluminescent spectrum at 920 nm. By carefully choosing the host materials, an PtTPTNP-F8 based NIR OLED achieved a EQE of 1.9%. Furthermore, an PtTPTNP-F8 OLED fabricated in a stable device structure demonstrated extraordinary operational stability with LT99 of >1000 h at 20 mA cm-2. Lastly, a series of imidazole-based blue Pt(II) complexes were developed and studied. Results indicated that structural modification of ligand molecules effectively tuned the emission spectral wavelength and bandwidth. Two blue complexes, i.e., Pt2O2 P2M and Pt2O2-PPy5-M, emitting at 472 and 476 nm respectively, exhibited narrow-band emission spectra with a full width at half maximum of 16 nm.
ContributorsCao, Linyu (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021