Matching Items (92)
134303-Thumbnail Image.png
Description
Vitamins and minerals are, by definition, essential substances that are necessary for good health, and needed by every cell and organ to function appropriately. A deficiency of any one vitamin or mineral can be very serious. Although a very healthy diet rich in vegetables, fruits, and protein can provide sufficient

Vitamins and minerals are, by definition, essential substances that are necessary for good health, and needed by every cell and organ to function appropriately. A deficiency of any one vitamin or mineral can be very serious. Although a very healthy diet rich in vegetables, fruits, and protein can provide sufficient amounts of most vitamins and minerals, many people do not consume an adequate diet. During pregnancy, there is an increased need for vitamins and minerals to promote a healthy pregnancy and a healthy baby. Prenatal supplements are intended to supplement a normal diet to ensure that adequate amounts of vitamins and minerals are consumed. The US Food and Drug Administration (FDA) has established Recommended Dietary Allowances for total vitamin/mineral intake from food and supplements, but they have not established recommendations for prenatal supplements. Therefore, there is a very wide variation in the content and quality of prenatal supplements. Many prenatal supplements contain only minimal levels of some vitamins and few or no minerals, in order to minimize cost and the number of pills. This results in insufficient vitamin/mineral supplementation for many women, and hence does not fully protect them or their children from pregnancy complications and health problems. Therefore, we have created our own set of recommendations for prenatal supplements. Our recommendations are based primarily on four sources: 1) FDA's Recommended Daily Allowances for pregnant women, which are estimated to meet the needs of 97.5% of healthy pregnant women. 2) FDA's Tolerable Upper Limit, which is the maximum amount of vitamins/minerals that can be safely consumed without any risk of health problems. 3) National Health and Nutrition Examination Survey (NHANES), which evaluates the average intake of vitamins and minerals by women ages 20-40 years in the US 4) Research studies on vitamin/mineral deficiencies or vitamin/mineral supplementation during pregnancy, and the effect on pregnancy, birth, and child health problems. In summary, the RDA establishes minimum recommended levels of vitamin/mineral intake from all sources, and the NHANES establishes the average intake from foods. The difference is what needs to be consumed in a supplement, on average. However, since people vary greatly in the quality of their diet, and since most vitamins and minerals have a high Tolerable Upper Limit, we generally recommend more than the difference between the RDA and the average NHANES. Vitamins generally have a larger Tolerable Upper Limit than do minerals. So, we recommend that prenatal vitamin/mineral supplements contain 100% of the RDA for most vitamins, and about 50% of the RDA for most minerals. However, based on additional research studies described below, in some cases we vary our recommendations from those averages.
ContributorsSorenson, Jacob (Author) / Adams, James (Thesis director) / Pollard, Elena (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134524-Thumbnail Image.png
Description
With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even

With the rising data output and falling costs of Next Generation Sequencing technologies, research into data compression is crucial to maintaining storage efficiency and costs. High throughput sequencers such as the HiSeqX Ten can produce up to 1.8 terabases of data per run, and such large storage demands are even more important to consider for institutions that rely on their own servers rather than large data centers (cloud storage)1. Compression algorithms aim to reduce the amount of space taken up by large genomic datasets by encoding the most frequently occurring symbols with the shortest bit codewords and by changing the order of the data to make it easier to encode. Depending on the probability distribution of the symbols in the dataset or the structure of the data, choosing the wrong algorithm could result in a compressed file larger than the original or a poorly compressed file that results in a waste of time and space2. To test efficiency among compression algorithms for each file type, 37 open-source compression algorithms were used to compress six types of genomic datasets (FASTA, VCF, BCF, GFF, GTF, and SAM) and evaluated on compression speed, decompression speed, compression ratio, and file size using the benchmark test lzbench. Compressors that outpreformed the popular bioinformatics compressor Gzip (zlib -6) were evaluated against one another by ratio and speed for each file type and across the geometric means of all file types. Compressors that exhibited fast compression and decompression speeds were also evaluated by transmission time through variable speed internet pipes in scenarios where the file was compressed only once or compressed multiple times.
ContributorsHowell, Abigail (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Taylor, Jay (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
134636-Thumbnail Image.png
Description
In injection molded plastic parts, knit lines occur where opposing streams of material fuse together while the mold cavity fills. When parts with knit lines experience external loading, the knit lines cause areas of mechanical weakness. This weakness is especially drastic in fiber-reinforced polymers due to an unfavorable orientation of

In injection molded plastic parts, knit lines occur where opposing streams of material fuse together while the mold cavity fills. When parts with knit lines experience external loading, the knit lines cause areas of mechanical weakness. This weakness is especially drastic in fiber-reinforced polymers due to an unfavorable orientation of fibers at the knit line. A possible way to reduce the impact of knit lines is to incorporate overflow tabs into the mold design. An overflow tab is a chamber attached to the mold cavity that provides an extra space for the end of material flow to occur. Research shows that overflow tabs improve the fiber orientation at the knit line, resulting in increased mechanical strength. The goal of this study is to utilize overflow tabs to optimize the knit line strength of nylon 6-6 that is 30% carbon fiber reinforced. In this project, an initial overflow tab is first designed. Then four modifications are made to the tab design, each altering a separate variable while holding the others constant. The design changes explored for the tab in this project include adding radii to the inlet, shifting the inlet location, increasing the inlet cross-sectional area by 50%, and increasing the tab chamber volume by 50%. Specimens were molded using the initial tab design and the modified tab designs. Testing for this experiment consists of three specimens of each type for three-point bending tests, and five specimens of each type for tensile tests. The material properties analyzed are the flexural modulus, flexural strength, tensile modulus, and tensile strength. From the testing, the tab with the 50% increased volume consistently yielded the highest results and showed large improvement from the initial tab design. However, the other three tab modifications either showed negative change or slight improvement from the initial tab design. Based on the results of this study, the overflow tab volume is the most beneficial design parameter to adjust.
ContributorsJones, Justin Michael (Author) / Adams, James (Thesis director) / Wamsley, Steven (Committee member) / Computer Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135326-Thumbnail Image.png
Description
The purpose of this honors project is to analyze the difference between different powder separation techniques, and their suitability for my capstone project – ‘Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity’. Due to the nature of my capstone project, my group needs to characterize foreign

The purpose of this honors project is to analyze the difference between different powder separation techniques, and their suitability for my capstone project – ‘Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity’. Due to the nature of my capstone project, my group needs to characterize foreign contaminants in IN 718 (Ni-based superalloy) powder with a mean diameter around 40um. In order to clearly analyze the contaminants and recycle useful IN 718 powders, powder separation is favorable since the filtered samples will be much easier to characterize rather than inspect all the powders at once under microscope. By conducting literature review, I found that powder separation is commonly used in Geology, and Chemistry department. To screen which combination of techniques could be the best for my project, I have consulted several research specialists, obtained adequate knowledge about powder separation. Accordingly, I will summarize the pros and cons of each method with regard the specific project that I am working on, and further explore the impacts of each method under economical, societal, and environmental considerations. Several powder separation techniques will be discussed in details in the following sections, including water elutriation, settling column, magnetic separation and centrifugation. In addition to these methods, sieving, water tabling and panning will be briefly introduced. After detailed comparison, I found that water elutriation is the most efficient way to purity IN718 powder for reuse purpose, and recovery rate is as high as 70%, which could result in a significant reduction in the manufacturing cost for Honeywell since currently Honeywell only use virgin powders to build parts, and 90% of the leftover powders are discarded.
ContributorsLuo, Zheyu (Author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135333-Thumbnail Image.png
Description
Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years.

Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years. Reusing IN 718 powder, a nickel-based super alloy metal powder, is an ideal option to reduce costs as well as reduce waste because it can be used with additive manufacturing, but the main obstacles are lack of procedure standardization and product quality assurances from this process. The goal of the capstone project, "Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity," is to create a powder characterization protocol in order to determine if the IN 718 powder can be reused and what effect the IN 718 reused powder has on the mechanical properties of the products Honeywell fabricates. To provide context and impact of this capstone project, this paper serves to identify the benefits of AM for Honeywell and the cost effectiveness of reusing the powder versus using virgin powder every time. It was found that Honeywell's investment in AM is due to the cost effectiveness of AM, versatility in product design, and to ensure Honeywell remains competitive in the future. In terms of reducing expenses, reusing powder enables costs to be approximately 45% less than using virgin powder. With these key pieces of information, the motivations for this capstone project are understood to a fuller and more profound degree.
ContributorsQuigley, Elizabeth (Co-author) / Luo, Zheyu (Co-author) / Murella, Anoosha (Co-author) / Lee, Wey Lyn (Co-author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Autism Spectrum Disorder is a disorder that makes learning, socializing and daily living much more challenging for affected children and adults because of their atypical behaviors. A few examples of these behaviors are repetitive movements, impulsive actions, inability to communicate in a social setting, and many more. There is a

Autism Spectrum Disorder is a disorder that makes learning, socializing and daily living much more challenging for affected children and adults because of their atypical behaviors. A few examples of these behaviors are repetitive movements, impulsive actions, inability to communicate in a social setting, and many more. There is a stigma behind autism that is caused by those who are not well informed on the disorder. These people lack information, and in the past, it was assumed that the disorder is caused by "bad parenting." The parents are then afraid of social shame brought upon them by their child and neglect or avoid a diagnosis for their child's disorder. This becomes a vicious cycle that has negative effects on the affected individuals and their loved ones. Neglect of a diagnosis may also be caused by misinformation interpreted by the parents as their child develops. The parents do not realize this child developing outside of normal behavioral patterns. Years of research have been done to attempt to alleviate the symptoms of autism and cure the disorder. The Autism and Asperger's Program at ASU has developed a year-long dietary plan that increases supplementation to alleviate nutritional deficiencies in participants with autism. These deficiencies include vitamins, minerals, essential fatty acids, sulfate, carnitine, and digestive enzymes such as sucrase, maltase, and lactase. The participants were also put on a gluten-free casein-free diet toward the end of the study. To test the effectiveness of the treatment, the Severity of Autism Scale (SAS) and Social Responsiveness Scales (SRS) were used. The SAS tested the overall severity of ASD participants by rating them from one to ten, ten being "very severe" in terms of ASD symptoms. The results of this scale were compared at the beginning of the study (day 0) and at the end of the study (day 365). The SRS tested the social responsiveness of participants in the form of overall SRS and five subscales that included awareness, cognition, communication, motivation, and mannerisms. These results were also compared at the beginning and end of the study. After analysis of the data, there seemed to be no correlation between age and severity of autism/social responsiveness of participants. There was also no statistically significant data to suggest that there was a correlation between gender and severity of autism/social responsiveness of participants. However, there was statistically significant evidence that the treatment group did improve over the non-treatment/delayed treatment group in both the SAS and SRS. Neither age nor gender had a significant effect on the effectiveness of the treatment. These positive findings suggest that the integrated dietary
utritional therapy was beneficial, and future research on dietary treatments for autism and other disorders is recommended. This may also further discoveries of affected epigenomes with regards to nutritional treatments in disorders like ASD. The epigenome is the methylation and demethylation of the genome that mediates gene expression.
ContributorsGutgsell, Crystal Megan (Author) / Adams, James (Thesis director) / Pollard, Elena (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135440-Thumbnail Image.png
Description
Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function

Many bacteria actively import environmental DNA and incorporate it into their genomes. This behavior, referred to as transformation, has been described in many species from diverse taxonomic backgrounds. Transformation is expected to carry some selective advantages similar to those postulated for meiotic sex in eukaryotes. However, the accumulation of loss-of-function alleles at transformation loci and an increased mutational load from recombining with DNA from dead cells create additional costs to transformation. These costs have been shown to outweigh many of the benefits of recombination under a variety of likely parameters. We investigate an additional proposed benefit of sexual recombination, the Red Queen hypothesis, as it relates to bacterial transformation. Here we describe a computational model showing that host-pathogen coevolution may provide a large selective benefit to transformation and allow transforming cells to invade an environment dominated by otherwise equal non-transformers. Furthermore, we observe that host-pathogen dynamics cause the selection pressure on transformation to vary extensively in time, explaining the tight regulation and wide variety of rates observed in naturally competent bacteria. Host-pathogen dynamics may explain the evolution and maintenance of natural competence despite its associated costs.
ContributorsPalmer, Nathan David (Author) / Cartwright, Reed (Thesis director) / Wang, Xuan (Committee member) / Sievert, Chris (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135454-Thumbnail Image.png
Description
Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes

Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes undergoing positive selection show faster rates. These may be related to the difference between humans and other primates. Three genes were found to be accelerated were FOXF1, IGFBP5, and ATP2B2, but only the latter one was found in humans and it seems unlikely that it would be related to the differences between mammary gland development at puberty between humans and non-human primates.
ContributorsArroyo, Diana (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Schwartz, Rachel (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates,

A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates, specifically carbon fiber, to make predictions of material properties used to derive design allowables. The advantages of the "trace" theory may not necessarily be specific to the aerospace industry, however many automotive manufacturers are facing environmental, social and political pressure to increase the gas mileage in their vehicles and reduce their carbon footprint. Therefore, the use of lighter materials, such as carbon fiber composites, to replace heavier metals in cars is inevitable yet as of now few auto manufacturers implement composites in their cars. The high material, testing and development costs, much like the aerospace industry, have been prohibitive to widespread use of these materials but progress is being made in overcoming those challenges. The "trace" method, while initially intended for quasi-isotropic, aerospace grade carbon-fiber laminates, still yields reasonable, and correctable, results for types of laminates as well such as with woven fabrics and thermoplastic matrices, much of which are being used in these early stages of automotive composite development. Despite the varying use of materials, the "trace" method could potentially boost automotive composites in a similar way to the aerospace industry by reducing testing time and costs and perhaps even playing a role in establishing emerging simulations of these materials.
ContributorsBrown, William Ross (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135204-Thumbnail Image.png
Description
The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed

The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed by ASU with <100 nVp-p noise, <10 nV offsets, 10 pV to 16 mV voltage range, and negligible thermoelectric drift. There is currently no other research group or company that can currently match both these low noise levels and wide voltage range. Two different dipping probes can be created with these specifications: one for high-use applications and one for low-use applications. The only difference between these probes is the outer shell; the high-use application probe has a shell made of G-10 fiberglass for a higher price, and the low-use application probe has a shell made of AISI 310 steel for a lower price. Both types of probes can be assembled in less than 8 hours for less than $2,500, requiring only soldering expertise. The low cost and short time to create these probes makes wide profit margins possible. The market for these cryogenic dipping probes is currently untapped, as most research groups and companies that use these probes build their own, which allows for rapid business growth. These potential consumers can be easily reached by marketing these probes at superconducting conferences. After several years of selling >50 probes, mass production can easily become possible by hiring several technicians, and still maintaining wide profit margins.
ContributorsHudson, Brooke Ashley (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05