Matching Items (196)
Filtering by

Clear all filters

131672-Thumbnail Image.png
Description
The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA

The rise in community-associated methicillin-resistant Staphylococcus aureus (MRSA) infections and the ability of the organism to develop resistance to antibiotics necessitate new treatment methods for MRSA. Geopolymers (GPs) are cheap, porous materials that have demonstrated adsorptive capabilities. In this study, GPs were investigated for their ability to adsorb whole MRSA cells and MRSA secreted proteins [culture filtrate proteins (CFPs)] as a complementary method of controlling MRSA infections. GPs have been synthesized with variable pore sizes (meso/macro scale) and further modified with stearic acid (SA) to increase surface hydrophobicity. Four GPs (SA-macroGP, macroGP, SA-mesoGP, and mesoGP) were incubated with whole cells and with CFPs to quantify GP adsorption capabilities. Following MRSA culture incubation with GPs, unbound MRSA cells were filtered and plated to determine cell counts. Following CFP incubation with GPs, unbound CFPs were separated via SDS-PAGE, stained with SYPRO Ruby, and analyzed using densitometry. Results indicate that macroGP was the most effective at adsorbing whole MRSA cells. Visual banding patterns and densitometry quantitation indicate that SA-mesoGP was the most effective at adsorbing CFP. Ultimately, GP-based products may be further developed as nonselective or selective adsorbents and integrated into fibrous materials for topical applications.
ContributorsGanser, Collin (Co-author, Co-author) / Haydel, Shelley E. (Thesis director) / Seo, Don (Committee member) / Borges, Chad (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132722-Thumbnail Image.png
Description
The first numerical predictions of the dynamical diquark model of multiquark exotic hadrons are presented. Using Born-Oppenheimer potentials calculated from lattice QCD and phenomenological diquark(triquark) masses, mass eigenvalues that are degenerate in spin and isospin are computed from numerical solutions to both coupled and uncoupled Schroedinger equations. Assuming reasonable estimates

The first numerical predictions of the dynamical diquark model of multiquark exotic hadrons are presented. Using Born-Oppenheimer potentials calculated from lattice QCD and phenomenological diquark(triquark) masses, mass eigenvalues that are degenerate in spin and isospin are computed from numerical solutions to both coupled and uncoupled Schroedinger equations. Assuming reasonable estimates of the fine-structure splittings, we find that the band structure of our mass spectra agrees well with the experimentally observed spectrum of charmonium-like states. Using our best fits, we predict a number of unobserved states, such as pentaquark states that lie below the charmonium-plus-nucleon threshold.
ContributorsPeterson, Curtis Taylor Taylor (Author) / Lebed, Richard (Thesis director) / Belitsky, Andrei (Committee member) / Department of Physics (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132588-Thumbnail Image.png
Description
This study adds to the literature about residential choice and sustainable transportation. Through the interviews and the personal stories gathered, there was diversity shown in the residential location choice process. We also noticed that “commute” means different things to different households, and that many people did not consider their commute

This study adds to the literature about residential choice and sustainable transportation. Through the interviews and the personal stories gathered, there was diversity shown in the residential location choice process. We also noticed that “commute” means different things to different households, and that many people did not consider their commute to work to be a primary factor determining their final home location. Moreover, many people were willing to increase their commute time, or trade access to desirable amenities for a longer commute. Commuting time to work was one example of the tradeoffs that homeowners make when choosing a home, but there were also others such as architectural type and access to neighborhood amenities. Lastly, time constraints proved to be a very significant factor in the home buying process. Several of our households had such strict time constraints that limited their search to a point of excluding whole areas. Overall, our study sheds light on transportation’s role in residential choice and underscores the complexity of the location choice process.
ContributorsKats, Elyse Nicole (Author) / Salon, Deborah (Thesis director) / Kuminoff, Nicolai (Committee member) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12
132859-Thumbnail Image.png
Description
Since 1979, Phoenix has been organized into 15 theoretically self-contained urban villages in order to manage rapid growth. The major objective of the village plan was to decrease demand for personal vehicle use by internalizing travel to the closest village core, or an adjacent village core, instead of expanding

Since 1979, Phoenix has been organized into 15 theoretically self-contained urban villages in order to manage rapid growth. The major objective of the village plan was to decrease demand for personal vehicle use by internalizing travel to the closest village core, or an adjacent village core, instead of expanding travel to one metropolitan core. Phoenix’s transition from a monocentric urban structure to a more polycentric structure has yet to be studied for its efficacy on this goal of turning personal vehicle travel inward. This paper pairs more conventional measures of automobile dependence, such as, use of alternative modes of transportation in place of private vehicle use and commute times, with more nuanced measures of internal travel between work and home, job housing ratio, and job industry breakdowns to describe Phoenix’s reliance on automobiles. Phoenix’s internal travel ratios were higher when compared to adjacent cities and either on-par or lower when compared to non-adjacent cities that were comparable to Phoenix in population density and size.
ContributorsCuiffo, Kathryn Victoria (Author) / King, David (Thesis director) / Salon, Deborah (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Psychology (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131169-Thumbnail Image.png
Description
This thesis explores the relationship between sustainability, the fashion industry, and fashion exhibitions. Sustainability has been a driving force in the fashion industry in recent years as designers attempt to combat staggering textile waste statistics in order to lessen the damage the industry has on the environment. Producers must rethink

This thesis explores the relationship between sustainability, the fashion industry, and fashion exhibitions. Sustainability has been a driving force in the fashion industry in recent years as designers attempt to combat staggering textile waste statistics in order to lessen the damage the industry has on the environment. Producers must rethink human engagement with nature based on a new ethic of ecosystem stewardship, which proposes that humans have ethical obligations to one another in their mutual relationship with non-human species and nature (Schmitz 13). Enhancing a socio-ecological perspective garners new ways of consuming and appreciating clothing design while focusing on lessening impacts on the environment through using less materials, reusing materials in new textile developments, and projecting a sustainable identity that can be followed by the public in order to be more conscious of spending habits, annual waste, and how sustainably ethical companies are. Removing natural resources or transforming landscapes to enhance human well-being paradoxically stands to diminish human well being over time (Schmitz 12), and this is something that humans face with the inevitability of climate change affecting future generations. In mapping the relationship between sustainability, fashion designer's design process, and the way curators communicate sustainable themes, an overall understanding of sustainable culture can be understood in the industry.
ContributorsLord, Nicolas K (Author) / Sewell, Dennita (Thesis director) / Mesch, Claudia (Committee member) / School of Art (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132173-Thumbnail Image.png
Description
Transit ridership is declining in most cities throughout America. Public transportation needs to be improved in order for cities to handle urban growth, reduce carbon footprint, and increase mobility across income groups. In order to determine what causes changes in transit ridership, I performed a descriptive analysis of five metro

Transit ridership is declining in most cities throughout America. Public transportation needs to be improved in order for cities to handle urban growth, reduce carbon footprint, and increase mobility across income groups. In order to determine what causes changes in transit ridership, I performed a descriptive analysis of five metro areas in the United States. I studied changes in transit ridership in Dallas, Denver, Minneapolis, Phoenix, and Seattle from 2013 through 2017 to determine where public transportation works and where it does not work. I used employment, commute, and demographic data to determine what affects transit ridership. Each metro area was studied as a separate case because the selected cities are difficult to compare directly. The Seattle metro area was the only metro to increase transit ridership throughout the period of the study. The Minneapolis metro area experienced a slight decline in transit ridership, while Phoenix and Denver declined significantly. The Dallas metro area declined most of the five cities studied. The denser metro areas fared much better than the less dense areas. In order to increase transit ridership cities should increase the density of their city and avoid sprawl. Certain factors led to declines in ridership in certain metro areas but not all. For example, gentrification contributed to ridership decline in Denver and Minneapolis, but Seattle gentrified and increased ridership. Dallas and Phoenix experienced low-levels of gentrification but experienced declining ridership. Therefore, organizations such as the American Public Transportation Association (APTA) who attempt to find the single factor causing the decline in transit ridership, or the one factor that will increase ridership are misguided. Above all, this thesis shows that there is no single factor causing the ridership decline in each metro area, and it is wise to study each metro area as a separate case.
ContributorsBarro, Joshua Andrew (Co-author) / Barro, Joshua (Co-author) / King, David (Thesis director) / Salon, Deborah (Committee member) / School of Politics and Global Studies (Contributor) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133164-Thumbnail Image.png
Description
In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality

In the development of personalized medicine and many other clinical studies, biospecimen integrity serves as the prerequisite for not only the accurate derivation of patient- and disease-specific molecular data from biological specimens but the meaningful downstream validation of biomarkers. However, a large number of preanalytical variables may influence the quality of biospecimens in an undesired way and ultimately render the samples unsuitable for molecular analysis. The limited ability to directly reduce discrepancies caused by preanalytical variables gives rise to the need for development and retrospective application of appropriate tests for assessment of biospecimen integrity. Nevertheless, the most standard approaches to assessing biospecimen integrity involve nontrivial procedures. Thus, the need for quality control tools or tests that are readily applicable and can produce results in a straightforward way becomes critical. As one of the major ex vivo biomolecular degradation mechanisms, oxidation that occurs when blood plasma and serum samples are exposed to thawed states during storage and processing is hard to forestall and detect. In an attempt to easily detect and monitor the degree of oxidation, the technique of Fluorescence Resonance Energy Transfer (FRET) was examined to determine whether this concept could be employed to monitor exposure of samples to thawed conditions when controlled by spontaneous oxidative disulfide bonding. The intended mode of usage was envisioned as a fluorescence liquid being stored in a separate compartment but within the same test tube as archived plasma and serum samples. This would allow the assessment of sample integrity by direct visualization of fluorescence under a hand-held black light. The fluorescent dynamic range as well as kinetic control of the reaction were studied. While the addition of Cu(II) proved to facilitate excellent dynamic range with regard to fluorescence quenching, the kinetics of the reaction were too rapid for practical use. Further investigation revealed that the fluorescence quenching mechanism might have actually occurred via Intramolecular Charge Transfer (ICT) rather than FRET mediated by oxidative disulfide bond formation. Introduction of Cu(II) via copper metal slowed fluorescence quenching to the point of practical utility; facilitating demonstration that storing at room temperature, refrigerating or freezing the samples delayed fluorescence quenching to different extents. To establish better kinetic control, future works will focus on establishing controlled, thoroughly understood kinetic release of Cu(II) from copper metal.
ContributorsZhang, Zihan (Author) / Borges, Chad (Thesis director) / Emady, Heather (Committee member) / Williams, Peter (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133266-Thumbnail Image.png
Description
Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water security in developing countries. For composites and coatings, graphene's strength,

Graphene has the ability to advance many common fields, including: membranes, composites and coatings, energy, and electronics. For membranes, graphene will be used as a filter for desalination plants which will reduce the cost of desalination and greatly increase water security in developing countries. For composites and coatings, graphene's strength, flexibility, and lightweight will be instrumental in producing the next generation of athletic wear and sports equipment. Graphene's use in energy comes from its theorized ability to charge a phone battery in seconds or an electric car in minutes. Finally, for electronics, graphene will be used to create faster transistors, flexible electronics, and fully integrated wearable technology.
ContributorsSiegel, Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133286-Thumbnail Image.png
Description
This is a two-part thesis, completed in conjunction with my Materials Science and Engineering Capstone Project. The first part involves the design and testing of cold-extruded high-density polyethylene for student oboe reeds. The goal of this section was to create a longer-lasting reed that produces a similar sound to a

This is a two-part thesis, completed in conjunction with my Materials Science and Engineering Capstone Project. The first part involves the design and testing of cold-extruded high-density polyethylene for student oboe reeds. The goal of this section was to create a longer-lasting reed that produces a similar sound to a cane reed, has less variation in quality, and costs less per year than cane reeds. For low-income students in particular, the cost of purchasing cane oboe reeds ($500-$2,000 per year) is simply not feasible. This project was designed to allow oboe to be a more affordable option for all students. Money should not be a factor that limits whether or a not a child is able to explore their interests. The process used to create the synthetic reed prototype involves cold-extrusion of high-density polyethylene in order to induce orientation in the polymer to replicate the uniaxial orientation of fibrous cane. After successful cold-extrusion of a high-density polyethylene (HDPE) cylinder, the sample was made into a reed by following standard reedmaking procedures. Then, the HDPE reed and a cane reed were quantitatively tested for various qualities, including flexural modulus, hardness, and free vibration frequency. The results from the design project are promising and show a successful proof of concept. The first prototype of an oriented HDPE reed demonstrates characteristics of a cane reed. The areas that need the most improvement are the flexural modulus and the stability of the higher overtones, but these areas can be improved with further development of the cold-extrusion process. The second part of this thesis is a survey and analysis focusing on the qualitative comparison of synthetic and cane oboe reeds. The study can be used in the future to refine the design of synthetic reeds, more specifically the cold-extruded high-density polyethylene student oboe reed I designed, to best replicate a cane reed. Rather than approaching this study from a purely engineering mindset, I brought in my own experience as an oboist. Therefore, the opinions of oboists who have a wide range of experience are considered in the survey. A panel of five oboists participated in the survey. They provided their opinion on various aspects of the five reeds, including vibrancy, response, stability, resistance, tone, and overall quality. Each of these metrics are rated on a scale from one to five, from unacceptable to performance quality. According to the survey, a participant's personal, hand-made cane reed is overall the most preferred option. My prototype HDPE student reed must be improved in many areas in order to rank near the other four reeds. However, its vibrancy and resistance already rival that of a Jones student reed. As this is just the first prototype, that is a significant accomplishment. With further refinement of the cold-extrusion and reedmaking method, the other areas of the HDPE reed may be improved, and the reed may eventually compete with the existing synthetic and cane reeds on the market.
ContributorsMitchell, Alexis Jacqueline (Author) / Adams, James (Thesis director) / Schuring, Martin (Committee member) / School of Music (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05