Matching Items (133)
Filtering by

Clear all filters

135333-Thumbnail Image.png
Description
Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years.

Honeywell is currently extending the reach of additive manufacturing (AM) in its product line and expects to produce as much as 40% of its inventory through AM in five years. Additive manufacturing itself is expected to grow into a $3.1 billion dollar industry in the next 5 to 10 years. Reusing IN 718 powder, a nickel-based super alloy metal powder, is an ideal option to reduce costs as well as reduce waste because it can be used with additive manufacturing, but the main obstacles are lack of procedure standardization and product quality assurances from this process. The goal of the capstone project, "Effect of Powder Reuse on DMLS (Direct Metal Laser Sintering) Product Integrity," is to create a powder characterization protocol in order to determine if the IN 718 powder can be reused and what effect the IN 718 reused powder has on the mechanical properties of the products Honeywell fabricates. To provide context and impact of this capstone project, this paper serves to identify the benefits of AM for Honeywell and the cost effectiveness of reusing the powder versus using virgin powder every time. It was found that Honeywell's investment in AM is due to the cost effectiveness of AM, versatility in product design, and to ensure Honeywell remains competitive in the future. In terms of reducing expenses, reusing powder enables costs to be approximately 45% less than using virgin powder. With these key pieces of information, the motivations for this capstone project are understood to a fuller and more profound degree.
ContributorsQuigley, Elizabeth (Co-author) / Luo, Zheyu (Co-author) / Murella, Anoosha (Co-author) / Lee, Wey Lyn (Co-author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135371-Thumbnail Image.png
Description
Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not

Almost every form of cancer deregulates the expression and activity of anabolic glycosyltransferase (GT) enzymes, which incorporate particular monosaccharides in a donor acceptor as well as linkage- and anomer-specific manner to assemble complex and diverse glycans that significantly affect numerous cellular events, including tumorigenesis and metastasis. Because glycosylation is not template-driven, GT deregulation yields heterogeneous arrays of aberrant intact glycan products, some in undetectable quantities in clinical bio-fluids (e.g., blood plasma). Numerous glycan features (e.g., 6 sialylation, β-1,6-branching, and core fucosylation) stem from approximately 25 glycan “nodes:” unique linkage specific monosaccharides at particular glycan branch points that collectively confer distinguishing features upon glycan products. For each node, changes in normalized abundance (Figure 1) may serve as nearly 1:1 surrogate measure of activity for culpable GTs and may correlate with particular stages of carcinogenesis. Complementary to traditional top down glycomics, the novel bottom-up technique applied herein condenses each glycan node and feature into a single analytical signal, quantified by two GC-MS instruments: GCT (time-of-flight analyzer) and GCMSD (transmission quadrupole analyzers). Bottom-up analysis of stage 3 and 4 breast cancer cases revealed better overall precision for GCMSD yet comparable clinical performance of both GC MS instruments and identified two downregulated glycan nodes as excellent breast cancer biomarker candidates: t-Gal and 4,6-GlcNAc (ROC AUC ≈ 0.80, p < 0.05). Resulting from the activity of multiple GTs, t-Gal had the highest ROC AUC (0.88) and lowest ROC p‑value (0.001) among all analyzed nodes. Representing core-fucosylation, glycan node 4,6-GlcNAc is a nearly 1:1 molecular surrogate for the activity of α-(1,6)-fucosyltransferase—a potential target for cancer therapy. To validate these results, future projects can analyze larger sample sets, find correlations between breast cancer stage and changes in t-Gal and 4,6-GlcNAc levels, gauge the specificity of these nodes for breast cancer and their potential role in other cancer types, and develop clinical tests for reliable breast cancer diagnosis and treatment monitoring based on t-Gal and 4,6-GlcNAc.
ContributorsZaare, Sahba (Author) / Borges, Chad (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135360-Thumbnail Image.png
Description
Aberrant glycosylation has been shown to be linked to specific cancers, and using this idea, it was proposed that the levels of glycans in the blood could predict stage I adenocarcinoma. To track this glycosylation, glycan were broken down into glycan nodes via methylation analysis. This analysis utilized information from

Aberrant glycosylation has been shown to be linked to specific cancers, and using this idea, it was proposed that the levels of glycans in the blood could predict stage I adenocarcinoma. To track this glycosylation, glycan were broken down into glycan nodes via methylation analysis. This analysis utilized information from N-, O-, and lipid linked glycans detected from gas chromatography-mass spectrometry. The resulting glycan node-ratios represent the initial quantitative data that were used in this experiment.
For this experiment, two Sets of 50 µl blood plasma samples were provided by NYU Medical School. These samples were then analyzed by Dr. Borges’s lab so that they contained normalized biomarker levels from patients with stage 1 adenocarcinoma and control patients with matched age, smoking status, and gender were examined. An ROC curve was constructed under individual and paired conditions and AUC calculated in Wolfram Mathematica 10.2. Methods such as increasing size of training set, using hard vs. soft margins, and processing biomarkers together and individually were used in order to increase the AUC. Using a soft margin for this particular data set was proved to be most useful compared to the initial set hard margin, raising the AUC from 0.6013 to 0.6585. In regards to which biomarkers yielded the better value, 6-Glc/6-Man and 3,6-Gal glycan node ratios had the best with 0.7687 AUC and a sensitivity of .7684 and specificity of .6051. While this is not enough accuracy to become a primary diagnostic tool for diagnosing stage I adenocarcinoma, the methods examined in the paper should be evaluated further. . By comparison, the current clinical standard blood test for prostate cancer that has an AUC of only 0.67.
ContributorsDe Jesus, Celine Spicer (Author) / Taylor, Thomas (Thesis director) / Borges, Chad (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135204-Thumbnail Image.png
Description
The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed

The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed by ASU with <100 nVp-p noise, <10 nV offsets, 10 pV to 16 mV voltage range, and negligible thermoelectric drift. There is currently no other research group or company that can currently match both these low noise levels and wide voltage range. Two different dipping probes can be created with these specifications: one for high-use applications and one for low-use applications. The only difference between these probes is the outer shell; the high-use application probe has a shell made of G-10 fiberglass for a higher price, and the low-use application probe has a shell made of AISI 310 steel for a lower price. Both types of probes can be assembled in less than 8 hours for less than $2,500, requiring only soldering expertise. The low cost and short time to create these probes makes wide profit margins possible. The market for these cryogenic dipping probes is currently untapped, as most research groups and companies that use these probes build their own, which allows for rapid business growth. These potential consumers can be easily reached by marketing these probes at superconducting conferences. After several years of selling >50 probes, mass production can easily become possible by hiring several technicians, and still maintaining wide profit margins.
ContributorsHudson, Brooke Ashley (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135168-Thumbnail Image.png
Description
How can we change what it means to be a human? Products can be used that will allow for near-instantaneous communication with one’s friends and family wherever they are: and the newest devices do not have to be even carried around, as they can be worn instead. Wearable electronics are

How can we change what it means to be a human? Products can be used that will allow for near-instantaneous communication with one’s friends and family wherever they are: and the newest devices do not have to be even carried around, as they can be worn instead. Wearable electronics are quickly becoming very popular, with 232.0 million wearable devices sold in 2015. This report provides an overview of current and developing wearable devices, investigates the characteristics of the average buyer for these different types of devices. Finally, marketing strategies are suggested. This work was completed in conjunction with a capstone project with Intel, where three objectives were achieved: First, a universal strain tester that could strain samples cyclically in a manner similar to the body was designed. This equipment was especially designed to be flexible in the testing conditions it could be exposed to, so samples could be tested at elevated temperatures or even underwater. Next, dogbone shaped samples for the testing of Young’s Modulus and elongation to failure were produced, and the cut quality of laser, water-jet, and die-cutting was compared in order to select the most defect-free method for reliable testing. Polydimethylsiloxane (PDMS) is a fantastic candidate material for wearable electronics, however there is some discrepancies in the literature—such as from Eleni et. al—about the impact of ultraviolet radiation on the mechanical properties. By conducting accelerated aging tests simulating up to five years exposure to the sun, it was determined that ultraviolet-induced cross-linking of the polymer chains does occur, leading to severe embrittlement (strain to failure reduced from 3.27 to 0.06 in some cases, reduction to approximately 0.21 on average). As simulated tests of possible usage conditions required strains of at least 0.50-0.70, a variety of solutions were suggested to reduce this embrittlement. This project can lead to standardization of wearables electronics testing methods for more reliable predictions about the device behavior, whether that device is a simple pedometer or something that allows the visually impaired to “see”, such as Toyota’s Blaid.
ContributorsNiebroski, Alexander Wayne (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135270-Thumbnail Image.png
Description
The work for this thesis was done in conjunction to that of my capstone project, which focused on understanding the effects of powder re-use on products built via Direct Metal Laser Sintering (DMLS), a specific additive manufacturing (AM) technique where powder particles are sintered together to form final parts. Honeywell

The work for this thesis was done in conjunction to that of my capstone project, which focused on understanding the effects of powder re-use on products built via Direct Metal Laser Sintering (DMLS), a specific additive manufacturing (AM) technique where powder particles are sintered together to form final parts. Honeywell Aerospace helped support this research by providing materials and mentorship; this work will play a key role in their decision to implement DMLS and other AM methods on a larger scale. Whereas the capstone focuses on the technical details of constructing characterization equipment, analyzing data, and formulating a concluding recommendation on whether the powder can be re-used, the thesis attempts to put this body of work in its greater context, surveying the economic and environmental effects of additive manufacturing technologies with a slant towards the aerospace industry. Shifts in the supply chain with aircraft parts and how this affects costs are explored, as well as how the quality and reliability of additively manufactured parts differs from their traditionally manufactured counterparts and the effects of this on related industries and purchasers.
ContributorsMurella, Anoosha Sainagaki (Author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134770-Thumbnail Image.png
Description
Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including

Disturbances in the protein interactome often play a large role in cancer progression. Investigation of protein-protein interactions (PPI) can increase our understanding of cancer pathways and will disclose unknown targets involved in cancer disease biology. Although numerous methods are available to study protein interactions, most platforms suffer from drawbacks including high false positive rates, low throughput, and lack of quantification. Moreover, most methods are not compatible for use in a clinical setting. To address these limitations, we have developed a multiplexed, in-solution protein microarray (MISPA) platform with broad applications in proteomics. MISPA can be used to quantitatively profile PPIs and as a robust technology for early detection of cancers. This method utilizes unique DNA barcoding of individual proteins coupled with next generation sequencing to quantitatively assess interactions via barcode enrichment. We have tested the feasibility of this technology in the detection of patient immune responses to oropharyngeal carcinomas and in the discovery of novel PPIs in the B-cell receptor (BCR) pathway. To achieve this goal, 96 human papillomavirus (HPV) antigen genes were cloned into pJFT7-cHalo (99% success) and pJFT7-n3xFlag-Halo (100% success) expression vectors. These libraries were expressed via a cell-free in vitro transcription-translation system with 93% and 96% success, respectively. A small-scale study of patient serum interactions with barcoded HPV16 antigens was performed and a HPV proteome-wide study will follow using additional patient samples. In addition, 15 query proteins were cloned into pJFT7_nGST expression vectors, expressed, and purified with 93% success to probe a library of 100 BCR pathway proteins and detect novel PPIs.
ContributorsRinaldi, Capria Lakshmi (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
168413-Thumbnail Image.png
Description
Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size

Microfluidic platforms have been exploited extensively as a tool for the separation of particles by electric field manipulation. Microfluidic devices can facilitate the manipulation of particles by dielectrophoresis. Separation of particles by size and type has been demonstrated by insulator-based dielectrophoresis in a microfluidic device. Thus, manipulating particles by size has been widely studied throughout the years. It has been shown that size-heterogeneity in organelles has been linked to multiple diseases from abnormal organelle size. Here, a mixture of two sizes of polystyrene beads (0.28 and 0.87 μm) was separated by a ratchet migration mechanism under a continuous flow (20 nL/min). Furthermore, to achieve high-throughput separation, different ratchet devices were designed to achieve high-volume separation. Recently, enormous efforts have been made to manipulate small size DNA and proteins. Here, a microfluidic device comprising of multiple valves acting as insulating constrictions when a potential is applied is presented. The tunability of the electric field gradient is evaluated by a COMSOL model, indicating that high electric field gradients can be reached by deflecting the valve at a certain distance. Experimentally, the tunability of the dynamic constriction was demonstrated by conducting a pressure study to estimate the gap distance between the valve and the substrate at different applied pressures. Finally, as a proof of principle, 0.87 μm polystyrene beads were manipulated by dielectrophoresis. These microfluidic platforms will aid in the understanding of size-heterogeneity of organelles for biomolecular assessment and achieve separation of nanometer-size DNA and proteins by dielectrophoresis.
ContributorsOrtiz, Ricardo (Author) / Ros, Alexandra (Thesis advisor) / Hayes, Mark (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2021
171777-Thumbnail Image.png
Description
Organic light-emitting diodes (OLEDs) have been successfully implemented in various display applications owing to rapid advancements in material design and device architecture. Their success in the display industry has ignited a rising interest in applying OLEDs for solid-state lighting applications through the development of white OLEDs (WOLEDs). However, to enter

Organic light-emitting diodes (OLEDs) have been successfully implemented in various display applications owing to rapid advancements in material design and device architecture. Their success in the display industry has ignited a rising interest in applying OLEDs for solid-state lighting applications through the development of white OLEDs (WOLEDs). However, to enter the market as a serious competitor, WOLEDs must achieve excellent color quality, high external quantum efficiency (EQE) as well as a long operational lifetime. In this research, novel materials and device architectures were explored to improve the performance of single-stack WOLEDs. A new Pt-based phosphorescent emitter, Pt2O2-p2m, was examined as a single emissive emitter for the development of a stable and efficient single-doped WOLED. A bilayer structure was employed to balance the charges carriers within the emissive layer resulting in low efficiency roll-off at high brightness, realizing a peak EQE of 21.5% and EQEs of 20% at 1000 cd m-2 and 15.3% at 7592 cd m-2. A novel phosphorescent/fluorescent, or hybrid, WOLED device architecture was also proposed. To gather a thorough understanding of blue fluorescent OLEDs prior to its use in a WOLED, a study was conducted to investigate the impact of the material selection on the device performance. The use of an anthracene type host demonstrated an improvement to the operational stability of the blue OLED by reducing the occurrence of degradation events. Additionally, various dopant concentrations and blocking materials revealed vastly different efficiency and lifetime results. Finally, a Pd (II) complex, Pd3O8-Py5, with efficient amber-colored aggregate emission was employed to produce a WOLED. Various host materials were investigated to achieve balanced white emission and the addition of an interlayer composed of a high triplet energy material was used to reduce quenching effects. Through this strategy, a color stable WOLED device with a peak EQE of 45% and an estimated LT95 over 50,000 hours at 1000 cd m-2 was realized. The comprehensive performance of the proposed device architecture competes with WOLED devices that are commercially available and reported within the literature domain, providing a strong foundation to further advance the development of highly efficient and stable single-stack WOLEDs.
ContributorsAmeri, Lydia (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2022
Description

In cold chain tracking systems, accuracy and flexibility across different temperatures ranges plays an integral role in monitoring biospecimen integrity. However, while two common cold chain tracking systems are currently available (electronic and physics/chemical), there is not an affordable cold chain tracking mechanism that can be applied to a variety

In cold chain tracking systems, accuracy and flexibility across different temperatures ranges plays an integral role in monitoring biospecimen integrity. However, while two common cold chain tracking systems are currently available (electronic and physics/chemical), there is not an affordable cold chain tracking mechanism that can be applied to a variety of temperatures while maintaining accuracy for individual vials. Hence, our lab implemented our understanding of biochemical reaction kinetics to develop a new cold chain tracking mechanism using the permanganate/oxalic acid reaction. The permanganate/oxalic acid reaction is characterized by the reduction of permanganate (MnVII) to Mn(II) with Mn(II)-autocatalyzed oxidation of oxalate to CO2, resulting in a pink to colorless visual indicator change when the reaction system is not in the solid state (i.e., frozen or vitrified). Throughout our research, we demonstrate, (i) Improved reaction consistency and accuracy along with extended run times with the implementation of a nitric acid-based labware washing protocol, (ii) Simulated reaction kinetics for the maximum length reaction and 60-minute reaction based on previously developed MATLAB scripts (iii) Experimental reaction kinetics to verify the simulated MATLAB maximum and 60-minute reactions times (iv) Long-term stability of the permanganate/oxalic acid reaction with water or eutectic solutions of sodium perchlorate and magnesium perchlorate at -80°C (v) Reaction kinetics with eutectic solvents, sodium perchlorate and magnesium perchlorate, at 25°C, 4°C, and -8°C (vi) Accelerated reaction kinetics after the addition of varying concentrations of manganese perchlorate (vii) Reaction kinetics of higher concentration reaction systems (5x and 10x; for darker colors), at 25°C (viii) Long-term stability of the 10x higher concentration reaction at -80°C.

ContributorsLjungberg, Emil (Author) / Borges, Chad (Thesis director) / Levitus, Marcia (Committee member) / Williams, Peter (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-12