Matching Items (139)
141481-Thumbnail Image.png
Description

Introduction: A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD.

Methods: In order

Introduction: A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD.

Methods: In order to further investigate these points, this paper performs the most detailed statistical analysis to date of a data set in this field. First morning urine samples were collected from 67 children and adults with ASD and 50 neurotypical controls of similar age and gender. The samples were analyzed to determine the levels of 10 urinary toxic metals (UTM). Autism-related symptoms were assessed with eleven behavioral measures. Statistical analysis was used to distinguish participants on the ASD spectrum and neurotypical participants based upon the UTM data alone. The analysis also included examining the association of autism severity with toxic metal excretion data using linear and nonlinear analysis. “Leave-one-out” cross-validation was used to ensure statistical independence of results.

Results and Discussion: Average excretion levels of several toxic metals (lead, tin, thallium, antimony) were significantly higher in the ASD group. However, ASD classification using univariate statistics proved difficult due to large variability, but nonlinear multivariate statistical analysis significantly improved ASD classification with Type I/II errors of 15% and 18%, respectively. These results clearly indicate that the urinary toxic metal excretion profiles of participants in the ASD group were significantly different from those of the neurotypical participants. Similarly, nonlinear methods determined a significantly stronger association between the behavioral measures and toxic metal excretion. The association was strongest for the Aberrant Behavior Checklist (including subscales on Irritability, Stereotypy, Hyperactivity, and Inappropriate Speech), but significant associations were found for UTM with all eleven autism-related assessments with cross-validation R2 values ranging from 0.12–0.48.

ContributorsAdams, James (Author) / Howsmon, Daniel P. (Author) / Kruger, Uwe (Author) / Geis, Elizabeth (Author) / Gehn, Eva (Author) / Fimbres, Valeria (Author) / Pollard, Elena (Author) / Mitchell, Jessica (Author) / Ingram, Julie (Author) / Hellmers, Robert (Author) / Quig, David (Author) / Hahn, Juergen (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-01-09
141488-Thumbnail Image.png
Description

Background: The relationship between relative metabolic disturbances and developmental disorders is an emerging research focus. This study compares the nutritional and metabolic status of children with autism with that of neurotypical children and investigates the possible association of autism severity with biomarkers.

Method:Participants were children ages 5-16 years in Arizona with Autistic

Background: The relationship between relative metabolic disturbances and developmental disorders is an emerging research focus. This study compares the nutritional and metabolic status of children with autism with that of neurotypical children and investigates the possible association of autism severity with biomarkers.

Method:Participants were children ages 5-16 years in Arizona with Autistic Spectrum Disorder (n = 55) compared with non-sibling, neurotypical controls (n = 44) of similar age, gender and geographical distribution. Neither group had taken any vitamin/mineral supplements in the two months prior to sample collection. Autism severity was assessed using the Pervasive Development Disorder Behavior Inventory (PDD-BI), Autism Treatment Evaluation Checklist (ATEC), and Severity of Autism Scale (SAS). Study measurements included: vitamins, biomarkers of vitamin status, minerals, plasma amino acids, plasma glutathione, and biomarkers of oxidative stress, methylation, sulfation and energy production.

Results: Biomarkers of children with autism compared to those of controls using a t-test or Wilcoxon test found the following statistically significant differences (p < 0.001): Low levels of biotin, plasma glutathione, RBC SAM, plasma uridine, plasma ATP, RBC NADH, RBC NADPH, plasma sulfate (free and total), and plasma tryptophan; also high levels of oxidative stress markers and plasma glutamate. Levels of biomarkers for the neurotypical controls were in good agreement with accessed published reference ranges. In the Autism group, mean levels of vitamins, minerals, and most amino acids commonly measured in clinical care were within published reference ranges. A stepwise, multiple linear regression analysis demonstrated significant associations between several groups of biomarkers with all three autism severity scales, including vitamins (adjusted R[superscript 2] of 0.25-0.57), minerals (adj. R[superscript 2] of 0.22-0.38), and plasma amino acids (adj. R[superscript 2] of 0.22-0.39).

Conclusion: The autism group had many statistically significant differences in their nutritional and metabolic status, including biomarkers indicative of vitamin insufficiency, increased oxidative stress, reduced capacity for energy transport, sulfation and detoxification. Several of the biomarker groups were significantly associated with variations in the severity of autism. These nutritional and metabolic differences are generally in agreement with other published results and are likely amenable to nutritional supplementation. Research investigating treatment and its relationship to the co-morbidities and etiology of autism is warranted.

ContributorsAdams, James (Author) / Audhya, Tapan (Author) / McDonough-Means, Sharon (Author) / Rubin, Robert A. (Author) / Quig, David (Author) / Geis, Elizabeth (Author) / Gehn, Eva (Author) / Loresto, Melissa (Author) / Mitchell, Jessica (Author) / Atwood, Sharon (Author) / Barnhouse, Suzanne (Author) / Lee, Wondra (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-06-08
141489-Thumbnail Image.png
Description

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children with ASD often suffer gastrointestinal (GI) problems that correlate with ASD severity. Several previous studies have reported abnormal gut bacteria in children with ASD. The gut microbiome-ASD connection has been tested in a mouse model of ASD, where the microbiome was mechanistically linked to abnormal metabolites and behavior. Similarly, a study of children with ASD found that oral non-absorbable antibiotic treatment improved GI and ASD symptoms, albeit temporarily. Here, a small open-label clinical trial evaluated the impact of Microbiota Transfer Therapy (MTT) on gut microbiota composition and GI and ASD symptoms of 18 ASD-diagnosed children.

Results: MTT involved a 2-week antibiotic treatment, a bowel cleanse, and then an extended fecal microbiota transplant (FMT) using a high initial dose followed by daily and lower maintenance doses for 7–8 weeks. The Gastrointestinal Symptom Rating Scale revealed an approximately 80% reduction of GI symptoms at the end of treatment, including significant improvements in symptoms of constipation, diarrhea, indigestion, and abdominal pain. Improvements persisted 8 weeks after treatment. Similarly, clinical assessments showed that behavioral ASD symptoms improved significantly and remained improved 8 weeks after treatment ended. Bacterial and phage deep sequencing analyses revealed successful partial engraftment of donor microbiota and beneficial changes in the gut environment. Specifically, overall bacterial diversity and the abundance of Bifidobacterium, Prevotella, and Desulfovibrio among other taxa increased following MTT, and these changes persisted after treatment stopped (followed for 8 weeks).

Conclusions: This exploratory, extended-duration treatment protocol thus appears to be a promising approach to alter the gut microbiome and virome and improve GI and behavioral symptoms of ASD. Improvements in GI symptoms, ASD symptoms, and the microbiome all persisted for at least 8 weeks after treatment ended, suggesting a long-term impact.

ContributorsKang, Dae Wook (Author) / Adams, James (Author) / Gregory, Ann C. (Author) / Borody, Thomas (Author) / Chittick, Lauren (Author) / Fasano, Alessio (Author) / Khoruts, Alexander (Author) / Geis, Elizabeth (Author) / Maldonado Ortiz, Juan (Author) / McDonough-Means, Sharon (Author) / Pollard, Elena (Author) / Roux, Simon (Author) / Sadowsky, Michael J. (Author) / Schwarzberg Lipson, Karen (Author) / Sullivan, Matthew B. (Author) / Caporaso, J. Gregory (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2017-01-23
141491-Thumbnail Image.png
Description

Background: Children with autism have often been reported to have gastrointestinal problems that are more frequent and more severe than in children from the general population.

Methods: Gastrointestinal flora and gastrointestinal status were assessed from stool samples of 58 children with Autism Spectrum Disorders (ASD) and 39 healthy typical children of similar ages.

Background: Children with autism have often been reported to have gastrointestinal problems that are more frequent and more severe than in children from the general population.

Methods: Gastrointestinal flora and gastrointestinal status were assessed from stool samples of 58 children with Autism Spectrum Disorders (ASD) and 39 healthy typical children of similar ages. Stool testing included bacterial and yeast culture tests, lysozyme, lactoferrin, secretory IgA, elastase, digestion markers, short chain fatty acids (SCFA's), pH, and blood presence. Gastrointestinal symptoms were assessed with a modified six-item GI Severity Index (6-GSI) questionnaire, and autistic symptoms were assessed with the Autism Treatment Evaluation Checklist (ATEC).

Results: Gastrointestinal symptoms (assessed by the 6-GSI) were strongly correlated with the severity of autism (assessed by the ATEC), (r = 0.59, p < 0.001). Children with 6-GSI scores above 3 had much higher ATEC Total scores than those with 6-GSI-scores of 3 or lower (81.5 +/- 28 vs. 49.0 +/- 21, p = 0.00002).
Children with autism had much lower levels of total short chain fatty acids (-27%, p = 0.00002), including lower levels of acetate, proprionate, and valerate; this difference was greater in the children with autism taking probiotics, but also significant in those not taking probiotics. Children with autism had lower levels of species of Bifidobacter (-43%, p = 0.002) and higher levels of species of Lactobacillus (+100%, p = 0.00002), but similar levels of other bacteria and yeast using standard culture growth-based techniques. Lysozyme was somewhat lower in children with autism (-27%, p = 0.04), possibly associated with probiotic usage. Other markers of digestive function were similar in both groups.

Conclusions: The strong correlation of gastrointestinal symptoms with autism severity indicates that children with more severe autism are likely to have more severe gastrointestinal symptoms and vice versa. It is possible that autism symptoms are exacerbated or even partially due to the underlying gastrointestinal problems. The low level of SCFA's was partly associated with increased probiotic use, and probably partly due to either lower production (less sacchrolytic fermentation by beneficial bacteria and/or lower intake of soluble fiber) and/or greater absorption into the body (due to longer transit time and/or increased gut permeability).

ContributorsAdams, James (Author) / Johansen, Leah (Author) / Powell, Linda (Author) / Quig, David (Author) / Rubin, Robert A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2011-03-16
141492-Thumbnail Image.png
Description

Background: Vitamin/mineral supplements are among the most commonly used treatments for autism, but the research on their use for treating autism has been limited.

Method: This study is a randomized, double-blind, placebo-controlled three month vitamin/mineral treatment study. The study involved 141 children and adults with autism, and pre and post symptoms of autism

Background: Vitamin/mineral supplements are among the most commonly used treatments for autism, but the research on their use for treating autism has been limited.

Method: This study is a randomized, double-blind, placebo-controlled three month vitamin/mineral treatment study. The study involved 141 children and adults with autism, and pre and post symptoms of autism were assessed. None of the participants had taken a vitamin/mineral supplement in the two months prior to the start of the study. For a subset of the participants (53 children ages 5-16) pre and post measurements of nutritional and metabolic status were also conducted.

Results: The vitamin/mineral supplement was generally well-tolerated, and individually titrated to optimum benefit. Levels of many vitamins, minerals, and biomarkers improved/increased showing good compliance and absorption. Statistically significant improvements in metabolic status were many including: total sulfate (+17%, p = 0.001), S-adenosylmethionine (SAM; +6%, p = 0.003), reduced glutathione (+17%, p = 0.0008), ratio of oxidized glutathione to reduced glutathione (GSSG:GSH; -27%, p = 0.002), nitrotyrosine (-29%, p = 0.004), ATP (+25%, p = 0.000001), NADH (+28%, p = 0.0002), and NADPH (+30%, p = 0.001). Most of these metabolic biomarkers improved to normal or near-normal levels. The supplement group had significantly greater improvements than the placebo group on the Parental Global Impressions-Revised (PGI-R, Average Change, p = 0.008), and on the subscores for Hyperactivity (p = 0.003), Tantrumming (p = 0.009), Overall (p = 0.02), and Receptive Language (p = 0.03). For the other three assessment tools the difference between treatment group and placebo group was not statistically significant. Regression analysis revealed that the degree of improvement on the Average Change of the PGI-R was strongly associated with several biomarkers (adj. R[superscript 2] = 0.61, p < 0.0005) with the initial levels of biotin and vitamin K being the most significant (p < 0.05); both biotin and vitamin K are made by beneficial intestinal flora.

Conclusions: Oral vitamin/mineral supplementation is beneficial in improving the nutritional and metabolic status of children with autism, including improvements in methylation, glutathione, oxidative stress, sulfation, ATP, NADH, and NADPH. The supplement group had significantly greater improvements than did the placebo group on the PGI-R Average Change. This suggests that a vitamin/mineral supplement is a reasonable adjunct therapy to consider for most children and adults with autism.

ContributorsAdams, James (Author) / Audhya, Tapan (Author) / McDonough-Means, Sharon (Author) / Rubin, Robert A. (Author) / Quig, David (Author) / Geis, Elizabeth (Author) / Gehn, Eva (Author) / Loresto, Melissa (Author) / Mitchell, Jessica (Author) / Atwood, Sharon (Author) / Barnhouse, Suzanne (Author) / Lee, Wondra (Author) / Autism/Asperger's Research Program (Contributor)
Created2011-12-12
141495-Thumbnail Image.png
Description

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states

The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrin (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π* transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D4h symmetry at ground state, a C4v symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution with Tetrahydrofuran that are provided in this paper.

ContributorsTheisen, Rebekah (Author) / Huang, Liang (Author) / Fleetham, Tyler (Author) / Adams, James (Author) / Li, Jian (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-07
141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
133248-Thumbnail Image.png
Description
The story of graphene truly began in what was simply a stub in the journal Physical Review not two years after the end of World War II. In 1947, McGill University physicist P.R. Wallace authored “The Band Theory of Graphite” and attempted to develop a foundation on which the structure-property

The story of graphene truly began in what was simply a stub in the journal Physical Review not two years after the end of World War II. In 1947, McGill University physicist P.R. Wallace authored “The Band Theory of Graphite” and attempted to develop a foundation on which the structure-property relationship of graphite could be explored; he calculates the number of free electrons and conductivity of what he describes as “a single hexagonal layer” and “suppos[es] that conduction takes place only in layers” in bulk graphite to predict wave functions, energies at specific atomic sites in the hexagonal lattice, and energy contours using a tight binding approximation for a hypothesized version of what we now call ‘armchair-style’ graphene. While Wallace was the first to explore the band structure and Brillouin Zones of single-layer graphite, the concept of two-dimensional materials was not new. In fact, for years, it was dismissed as a thermodynamic impossibility.

Everything seemed poised against any proposed physical and experimental stability of a structure like graphene. “Thermodynamically impossible”– a not uncommon shutdown to proposed novel physical or chemical concepts– was once used to describe the entire field of proposed two-dimensional crystals functioning separately from a three-dimensional base or crystalline structure. Rudolf Peierls and Lev Davoidovich Landau, both very accomplished physicists respectively known for the Manhattan Project and for developing a mathematical theory of helium superfluidity, rejected the possibility of isolated monolayer to few-layered crystal lattices. Their reasoning was that diverging thermodynamic-based crystal lattice fluctuations would render the material unstable regardless of controlled temperature. This logic is flawed, but not necessarily inaccurate– diamond, for instance, is thermodynamically metastable at room temperature and pressure in that there exists a slow (i.e. slow on the scale of millions of years) but continuous transformation to graphite. However, this logic was used to support an explanation of thermodynamic impossibility that was provided for graphene’s lack of isolation as late as 1979 by Cornell solid-state physicist Nathaniel David Mermin. These physicists’ claims had clear and consistent grounding in experimental data: as thin films become thinner, there exists a trend of a decreasing melting temperature and increasing instability that renders the films into islands at somewhere around ten to twenty atomic layers. This is driven by the thermodynamically-favorable minimization of surface energy.
ContributorsShulman, Neal Arthur (Author) / Adams, James (Thesis director) / Islam, Rafiqul (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and severities, affecting communication, behavior, and social interactions. With the prevalence of ASD rising to affect nearly 1 in 36 children in the United States, understanding and addressing the multifaceted needs of those with

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and severities, affecting communication, behavior, and social interactions. With the prevalence of ASD rising to affect nearly 1 in 36 children in the United States, understanding and addressing the multifaceted needs of those with ASD is increasingly critical. This review explores the interplay between genetic, environmental, and immune factors in the onset of ASD, focusing on metabolic dysfunctions and the role of the gut-brain axis. Emerging research highlights the significance of abnormal metabolites and gut microbiota imbalances in contributing to the pathophysiology of ASD, suggesting that these factors may influence neurological function and behavior through modulating immune responses. Recent analyses have uncovered metabolic disturbances in ASD, affecting amino acid metabolism, glutathione metabolism, glycolysis and the TCA cycle, homocysteine metabolism, ketone body synthesis, and lipid metabolism. These disturbances offer insights into how metabolic dysfunctions may contribute to the neurological and behavioral features of ASD. Furthermore, the gut microbiota's role in immune responses and the controversial impact of antibiotic use on gut flora composition is important to the complexity of ASD and the need for a nuanced understanding of treatment effects. This review delves into the current understanding of metabolic dysfunctions in children with ASD, emphasizing the critical role of gut microbiota and the impact of antibiotic use. Specifically, this review discusses SCFAs, para-cresol, amino acid metabolites, and glutathione and their respective specific treatments. It also explores the potential of vitamin/mineral supplementation as a therapeutic strategy, highlighting significant improvements in metabolic markers and behavioral symptoms associated with ASD. The findings from key studies, including those by Adams et al., suggest that targeted nutritional interventions and careful management of gut health could offer promising avenues for improving the quality of life for individuals with ASD. The review also acknowledges the need for further research to confirm the long-term effects of these interventions and to develop personalized treatment approaches that consider the unique needs in individuals with ASD.
ContributorsNandakumar, Keshav (Author) / Adams, James (Thesis director) / Flynn, Christina (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2024-05