Matching Items (183)
149710-Thumbnail Image.png
Description
Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive,

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature.
ContributorsAnwar, Shahriar (Author) / Adams, James B (Thesis advisor) / Crozier, Peter (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150354-Thumbnail Image.png
Description
There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued

There is an inexorable link between structure and stress, both of which require study in order to truly understand the physics of thin films. To further our knowledge of thin films, the relationship between structure and stress development was examined in three separate systems in vacuum. The first was continued copper thin film growth in ultra-high vacuum after adsorption of a sub-monolayer quantity of oxygen. Results showed an increase in compressive stress generation, and theory was proposed to explain the additional compressive stress within the films. The second system explored was the adsorption of carbon monoxide on the platinum {111} surface in vacuum. The experiments displayed a correlation between known structural developments in the adsorbed carbon monoxide adlayer and the surface stress state of the system. The third system consisted of the growth and annealing stresses of ice thin films at cryogenic temperatures in vacuum. It was shown that the growth stresses are clearly linked to known morphology development from literature, with crystalline ice developing compressive and amorphous ice developing tensile stresses respectively, and that amorphous ice films develop additional tensile stresses upon annealing.
ContributorsKennedy, Jordan (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2011
147871-Thumbnail Image.png
Description

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design

Supported catalytic nanoparticles undergo rapid structural transformations faster than many transmission electron microscopes (TEMs) can track. This is the case with platinum nanoparticles supported on cerium oxide (Pt/CeO2) in a CO and O2 gaseous environment. By furthering our understanding of the structural dynamics of the Pt/CeO2 system, improved catalyst design principles may be derived to enhance the efficiency of this catalyst. Developing static models of a 2 nm Pt nanoparticle supported on CeO2 and simulating TEM images of the models was found to create similar images to those seen in experimental TEM time-resolved series of the system. Rotations of static models on a ceria support provides a way to understand the experimental samples in three dimensions, which is difficult in two dimensional TEM images. This project expands the possibilities of interpreting TEM images of catalytic systems.

ContributorsBlock, Claire (Author) / Crozier, Peter (Thesis director) / Muhich, Christopher (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150301-Thumbnail Image.png
Description
This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice

This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice matching with ZnSnP2, the other component in this tandem device. This work is divided into two main chapters, which will cover: calculations and method to determine the formation energy and abundance of native point defects, and a model to calculate the vapor pressure over a ternary material from first-principles. The purpose of this work is to guide experimental work being done in tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such that it can be used as a photovoltaic. Since properties of photovoltaic depend greatly on defect concentrations and film quality, a theoretical understanding of how laboratory conditions affect these properties is very valuable. The work done here is from first-principles and utilizes density functional theory using the local density approximation. Results from the native point defect study show that the zinc vacancy (VZn) and the germanium antisite (GeZn) are the more prominent defects; which most likely produce non-stoichiometric films. The vapor pressure model for a ternary system is validated using known vapor pressure for monatomic and binary test systems. With a valid ternary system vapor pressure model, results show there is a kinetic barrier to decomposition for ZnGeAs2.
ContributorsTucker, Jon R (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Newman, Nathan (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2011
152284-Thumbnail Image.png
Description
Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at

Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at higher current densities and elevated temperatures. Gold-based metallization was implemented on GaAs devices because it uniquely forms a very low resistance ohmic contact and gold interconnects have superior electrical and thermal conductivity properties. Gold (Au) was also believed to have improved resistance to electromigration due to its higher melting temperature, yet electromigration reliability data on passivated Au interconnects is scarce and inadequate in the literature. Therefore, the objective of this research was to characterize the electromigration lifetimes of passivated Au interconnects under precisely controlled stress conditions with statistically relevant quantities to obtain accurate model parameters essential for extrapolation to normal operational conditions. This research objective was accomplished through measurement of electromigration lifetimes of large quantities of passivated electroplated Au interconnects utilizing high-resolution in-situ resistance monitoring equipment. Application of moderate accelerated stress conditions with a current density limited to 2 MA/cm2 and oven temperatures in the range of 300°C to 375°C avoided electrical overstress and severe Joule-heated temperature gradients. Temperature coefficients of resistance (TCRs) were measured to determine accurate Joule-heated Au interconnect film temperatures. A failure criterion of 50% resistance degradation was selected to prevent thermal runaway and catastrophic metal ruptures that are problematic of open circuit failure tests. Test structure design was optimized to reduce resistance variation and facilitate failure analysis. Characterization of the Au microstructure yielded a median grain size of 0.91 ìm. All Au lifetime distributions followed log-normal distributions and Black's model was found to be applicable. An activation energy of 0.80 ± 0.05 eV was measured from constant current electromigration tests at multiple temperatures. A current density exponent of 1.91 was extracted from multiple current densities at a constant temperature. Electromigration-induced void morphology along with these model parameters indicated grain boundary diffusion is dominant and the void nucleation mechanism controlled the failure time.
ContributorsKilgore, Stephen (Author) / Adams, James (Thesis advisor) / Schroder, Dieter (Thesis advisor) / Krause, Stephen (Committee member) / Gaw, Craig (Committee member) / Arizona State University (Publisher)
Created2013
152328-Thumbnail Image.png
Description
Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the

Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown that capacities comparable to graphite can be obtained for up to 10 cycles and lower capacities can be obtained for up to 20 cycles. Unlike bulk silicon, the clathrate structure does not undergo excessive volume change upon lithium intercalation, and therefore, the crystal structure is morphologically stable over many cycles. X-ray diffraction of the clathrate after cycling showed that crystallinity is intact, indicating that the clathrate does not collapse during reversible intercalation with lithium ions. Electrochemical potential spectroscopy obtained from the cycling data showed that there is an absence of formation of lithium-silicide, which is the product of lithium alloying with diamond cubic silicon. Type II silicon clathrate, NaxSi136, consists of silicon making up the framework structure and sodium (guest) atoms occupying the interstitial spaces. These clathrates showed very high capacities during their first intercalation cycle, in the range of 3,500 mAh/g, but then deteriorated during subsequent cycles. X-ray diffraction after one cycle showed the absence of clathrate phase and the presence of lithium-silicide, indicating the disintegration of clathrate structure. This could explain the silicon-like cycling behavior of Type II clathrates.
ContributorsRaghavan, Rahul (Author) / Chan, Candace K. (Thesis advisor) / Crozier, Peter (Committee member) / Petuskey, William T (Committee member) / Arizona State University (Publisher)
Created2013
151834-Thumbnail Image.png
Description
Life cycle assessment (LCA) is a powerful framework for environmental decision making because the broad boundaries called for prevent shifting of burden from one life-cycle phase to another. Numerous experts and policy setting organizations call for the application of LCA to developing nanotechnologies. Early application of LCA to nanotechnology may

Life cycle assessment (LCA) is a powerful framework for environmental decision making because the broad boundaries called for prevent shifting of burden from one life-cycle phase to another. Numerous experts and policy setting organizations call for the application of LCA to developing nanotechnologies. Early application of LCA to nanotechnology may identify environmentally problematic processes and supply chain components before large investments contribute to technology lock in, and thereby promote integration of environmental concerns into technology development and scale-up (enviro-technical integration). However, application of LCA to nanotechnology is problematic due to limitations in LCA methods (e.g., reliance on data from existing industries at scale, ambiguity regarding proper boundary selection), and because social drivers of technology development and environmental preservation are not identified in LCA. This thesis proposes two methodological advances that augment current capabilities of LCA by incorporating knowledge from technical and social domains. Specifically, this thesis advances the capacity for LCA to yield enviro-technical integration through inclusion of scenario development, thermodynamic modeling, and use-phase performance bounding to overcome the paucity of data describing emerging nanotechnologies. With regard to socio-technical integration, this thesis demonstrates that social values are implicit in LCA, and explores the extent to which these values impact LCA practice and results. There are numerous paths of entry through which social values are contained in LCA, for example functional unit selection, impact category selection, and system boundary definition - decisions which embody particular values and determine LCA results. Explicit identification of how social values are embedded in LCA promotes integration of social and environmental concerns into technology development (socio-enviro-technical integration), and may contribute to the development of socially-responsive and environmentally preferable nanotechnologies. In this way, tailoring LCA to promote socio-enviro-technical integration is a tangible and meaningful step towards responsible innovation processes.
ContributorsWender, Ben A. (Author) / Seager, Thomas P (Thesis advisor) / Crozier, Peter (Committee member) / Fraser, Matthew (Committee member) / Guston, David (Committee member) / Arizona State University (Publisher)
Created2013
151984-Thumbnail Image.png
Description
There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions

There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions such as overall water splitting and the identification of efficient and effective semiconductor materials. To this end, the search for novel semiconductors that can act as light absorbers is still needed. The copper hydroxyphosphate mineral libethenite (CHP), which has a chemical formula of Cu2(OH)PO4, has been recently shown to be active for photocatalytic degradation of methylene blue under UV-–irradiation, indicating that photo-excited electrons and holes can effectively be generated and separated in this material. However, CHP has not been well studied and many of its fundamental electrochemical and photoelectrochemical properties are still unknown. In this work, the synthesis of different morphologies of CHP using hydrothermal synthesis and precipitation methods were explored. Additionally, a preliminary investigation of the relevant fundamental characteristics such as the bandgap, flatband potential, band diagram, electrochemical and photoelectrochemical properties for CHP was performed. Better understanding of the properties of this material may lead to the development of improved catalysts and photocatalysts from natural sources.
ContributorsLi, Man (Author) / Chan, Candace K. (Thesis advisor) / O'Connell, Michael (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2013
152101-Thumbnail Image.png
Description
This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included

This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included in research related to children with ASD, and there is only limited services available for them. This exploratory study (n=6) is aimed at better understanding the siblings' lives in their family settings in order to identify the siblings' unmet needs and determine how they have been influenced by the child with ASD. This study is also aimed at identifying the most appropriate support for the siblings to help them cope better. The study followed the Resiliency Model of Family Stress, Adjustment, and Adaptation and a narrative theory approach. An in-depth interview with the parents was conducted for the study, so the findings reflect the parents' perception of the siblings. All the themes emerged into two categories: life in the family setting and supports. The findings indicate that the families are striving for balance between the siblings and the children with ASD, but still tend to focus more on the children with ASD. Also, the families tend to have autonomous personal support systems. The parents tend to perceive that these personal support systems are good enough for the siblings; therefore, the parents do not feel that formal support for the siblings was necessary. As a result of the findings, recommendations are made for the organizations that work with individuals with ASD to provide more appropriate services for the families of children with ASD, including siblings. Also, recommendations are made for future studies to clarify more factors related to the siblings due to the limitation of this study; the siblings' lives were reflected vicariously via the parents.
ContributorsJeong, Seong Hae (Author) / Marsiglia, Flavio F (Thesis advisor) / Ayers, Stephanie (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2013
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013