Matching Items (1,106)
Filtering by

Clear all filters

150052-Thumbnail Image.png
Description
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships.

The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in ecology, and a number of recent field experimental studies have greatly improved our understanding of this relationship. Spatial heterogeneity is a ubiquitous characterization of ecosystem processes, and has played a significant role in shaping BEF relationships. The first step towards understanding the effects of spatial heterogeneity on the BEF relationships is to quantify spatial heterogeneity characteristics of key variables of biodiversity and ecosystem functioning, and identify the spatial relationships among these variables. The goal of our research was to address the following research questions based on data collected in 2005 (corresponding to the year when the initial site background information was conducted) and in 2008 (corresponding to the year when removal treatments were conducted) from the Inner Mongolia Grassland Removal Experiment (IMGRE) located in northern China: 1) What are the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass in a natural grassland community of Inner Mongolia, China? How are they related spatially? and 2) How do removal treatments affect the spatial patterns of soil nutrients, plant biodiversity, and aboveground biomass? Is there any change for their spatial correlations after removal treatments? Our results showed that variables of biodiversity and ecosystem functioning in the natural grassland community would present different spatial patterns, and they would be spatially correlated to each other closely. Removal treatments had a significant effect on spatial structures and spatial correlations of variables, compared to those prior to the removal treatments. The differences in spatial pattern of plant and soil variables and their correlations before and after the biodiversity manipulation may not imply that the results from BEF experiments like IMGRE are invalid. However, they do suggest that the possible effects of spatial heterogeneity on the BEF relationships should be critically evaluated in future studies.
ContributorsYuan, Fei (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew T. (Committee member) / Rowe, Helen I (Committee member) / Arizona State University (Publisher)
Created2011
150301-Thumbnail Image.png
Description
This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice

This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice matching with ZnSnP2, the other component in this tandem device. This work is divided into two main chapters, which will cover: calculations and method to determine the formation energy and abundance of native point defects, and a model to calculate the vapor pressure over a ternary material from first-principles. The purpose of this work is to guide experimental work being done in tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such that it can be used as a photovoltaic. Since properties of photovoltaic depend greatly on defect concentrations and film quality, a theoretical understanding of how laboratory conditions affect these properties is very valuable. The work done here is from first-principles and utilizes density functional theory using the local density approximation. Results from the native point defect study show that the zinc vacancy (VZn) and the germanium antisite (GeZn) are the more prominent defects; which most likely produce non-stoichiometric films. The vapor pressure model for a ternary system is validated using known vapor pressure for monatomic and binary test systems. With a valid ternary system vapor pressure model, results show there is a kinetic barrier to decomposition for ZnGeAs2.
ContributorsTucker, Jon R (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Newman, Nathan (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2011
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
137869-Thumbnail Image.png
Description
Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each

Meteorology is an uncommon term rarely resonating through elementary classrooms. However, it is a concept found in both fourth and sixth grade Arizona science standards. As issues involving the environment are becoming more pertinent, it is important to study and understand atmospheric processes along with fulfilling the standards for each grade level. This thesis project teaches the practical skills of weather map reading and weather forecasting through the creation and execution of an after school lesson with the aide of seven teen assistants.
ContributorsChoulet, Shayna (Author) / Walters, Debra (Thesis director) / Oliver, Jill (Committee member) / Balling, Robert (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137870-Thumbnail Image.png
Description
Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part

Plants are essential to human life. They release oxygen into the atmosphere for us to breathe. They also provide shelter, medicine, clothing, tools, and food. For many people, the food that is on their tables and in their supermarkets isn't given much thought. Where did it come from? What part of the plant is it? How does it relate to others in the plant kingdom? How do other cultures use this plant? The most many of us know about them is that they are at the supermarket when we need them for dinner (Nabhan, 2009) (Vileisis, 2008).
ContributorsBarron, Kara (Author) / Landrum, Leslie (Thesis director) / Swanson, Tod (Committee member) / Pigg, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137871-Thumbnail Image.png
DescriptionBased on previous research and findings it is proven that a non-profit class to create awareness will be beneficial in the prevention of eating disorders. This analysis will provide significant research to defend the proposed class.
ContributorsAllen, Brittany (Author) / Chung, Deborah (Author) / Fey, Richard (Thesis director) / Peck, Sidnee (Committee member) / Mazurkiewicz, Milena (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
Description
Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the

Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the next stress without a physical burden. Pair-housed adult male rats were transported to a novel context and restrained or left undisturbed (6hr). The next day, rats were returned to the same context and were either restrained or left undisturbed in the context (n=8/group). After 90min, rats were euthanized to determine functional activation in limbic structures using Fos immunohistochemistry and to measure HPA axis reactivity through blood serum corticosterone levels. Regardless of day 1 experience, context exposure on day 2 enhanced Fos expression in CA1 and CA3 of the hippocampus, basolateral amygdala, and central amygdala. Conversely, other regions and corticosterone levels demonstrated modulation from the previous day's experience. Specifically, rats that were placed back into the restraint context but not restrained on day 2 showed enhanced Fos expression in the dentate gyrus suprapyramidal blade (DGSup), and infralimbic cortex (IL). Also Fos expression was attenuated in rats that received two restraint exposures in the IL and medial amygdala (MEA), suggesting habituation. Only the DG infrapyramidal blade (DGInf) showed enhanced Fos expression to restraint on day 2 without influence of the previous day. While context predominately directed Fos activation, prior experience with restraint influenced Fos expression in the DGSup, IL, MEA and corticosterone levels to support restraint having psychological components.
ContributorsAnouti, P. Danya (Author) / Conrad, D. Cheryl (Thesis director) / Hammer, Ronald (Committee member) / Hoffman, N. Ann (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
152284-Thumbnail Image.png
Description
Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at

Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at higher current densities and elevated temperatures. Gold-based metallization was implemented on GaAs devices because it uniquely forms a very low resistance ohmic contact and gold interconnects have superior electrical and thermal conductivity properties. Gold (Au) was also believed to have improved resistance to electromigration due to its higher melting temperature, yet electromigration reliability data on passivated Au interconnects is scarce and inadequate in the literature. Therefore, the objective of this research was to characterize the electromigration lifetimes of passivated Au interconnects under precisely controlled stress conditions with statistically relevant quantities to obtain accurate model parameters essential for extrapolation to normal operational conditions. This research objective was accomplished through measurement of electromigration lifetimes of large quantities of passivated electroplated Au interconnects utilizing high-resolution in-situ resistance monitoring equipment. Application of moderate accelerated stress conditions with a current density limited to 2 MA/cm2 and oven temperatures in the range of 300°C to 375°C avoided electrical overstress and severe Joule-heated temperature gradients. Temperature coefficients of resistance (TCRs) were measured to determine accurate Joule-heated Au interconnect film temperatures. A failure criterion of 50% resistance degradation was selected to prevent thermal runaway and catastrophic metal ruptures that are problematic of open circuit failure tests. Test structure design was optimized to reduce resistance variation and facilitate failure analysis. Characterization of the Au microstructure yielded a median grain size of 0.91 ìm. All Au lifetime distributions followed log-normal distributions and Black's model was found to be applicable. An activation energy of 0.80 ± 0.05 eV was measured from constant current electromigration tests at multiple temperatures. A current density exponent of 1.91 was extracted from multiple current densities at a constant temperature. Electromigration-induced void morphology along with these model parameters indicated grain boundary diffusion is dominant and the void nucleation mechanism controlled the failure time.
ContributorsKilgore, Stephen (Author) / Adams, James (Thesis advisor) / Schroder, Dieter (Thesis advisor) / Krause, Stephen (Committee member) / Gaw, Craig (Committee member) / Arizona State University (Publisher)
Created2013
151938-Thumbnail Image.png
Description

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient loading and climate to drive watershed nutrient yields? I conducted research in two study systems with contrasting spatial and temporal scales. Using a combination of data-mining and modeling approaches, I reconstructed nitrogen and phosphorus budgets for the northeastern US over the 20th century, including anthropogenic nutrient inputs and riverine fluxes, for ~200 watersheds at 5 year time intervals. Infrastructure systems, such as sewers, wastewater treatment plants, and reservoirs, strongly affected the spatial and temporal patterns of nutrient fluxes from northeastern watersheds. At a smaller scale, I investigated the effects of urban stormwater drainage infrastructure on water and nutrient delivery from urban watersheds in Phoenix, AZ. Using a combination of field monitoring and statistical modeling, I tested hypotheses about the importance of hydrologic and biogeochemical control of nutrient delivery. My research suggests that hydrology is the major driver of differences in nutrient fluxes from urban watersheds at the event scale, and that consideration of altered hydrologic networks is critical for understanding anthropogenic impacts on biogeochemical cycles. Overall, I found that human activities affect nutrient transport via multiple pathways. Anthropogenic nutrient additions increase the supply of nutrients available for transport, whereas hydrologic infrastructure controls the delivery of nutrients from watersheds. Incorporating the effects of hydrologic infrastructure is critical for understanding anthropogenic effects on biogeochemical fluxes across spatial and temporal scales.

ContributorsHale, Rebecca Leslie (Author) / Grimm, Nancy (Thesis advisor) / Childers, Daniel (Committee member) / Vivoni, Enrique (Committee member) / York, Abigail (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2013
152101-Thumbnail Image.png
Description
This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included

This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included in research related to children with ASD, and there is only limited services available for them. This exploratory study (n=6) is aimed at better understanding the siblings' lives in their family settings in order to identify the siblings' unmet needs and determine how they have been influenced by the child with ASD. This study is also aimed at identifying the most appropriate support for the siblings to help them cope better. The study followed the Resiliency Model of Family Stress, Adjustment, and Adaptation and a narrative theory approach. An in-depth interview with the parents was conducted for the study, so the findings reflect the parents' perception of the siblings. All the themes emerged into two categories: life in the family setting and supports. The findings indicate that the families are striving for balance between the siblings and the children with ASD, but still tend to focus more on the children with ASD. Also, the families tend to have autonomous personal support systems. The parents tend to perceive that these personal support systems are good enough for the siblings; therefore, the parents do not feel that formal support for the siblings was necessary. As a result of the findings, recommendations are made for the organizations that work with individuals with ASD to provide more appropriate services for the families of children with ASD, including siblings. Also, recommendations are made for future studies to clarify more factors related to the siblings due to the limitation of this study; the siblings' lives were reflected vicariously via the parents.
ContributorsJeong, Seong Hae (Author) / Marsiglia, Flavio F (Thesis advisor) / Ayers, Stephanie (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2013