Matching Items (97)
Filtering by

Clear all filters

134507-Thumbnail Image.png
Description
Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic

Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic factors may help explain the biological mechanisms underlying diabetes risk reduction following lifestyle changes. MicroRNAs (miRNAs) are small, non-coding RNA’s that regulate gene expression and have emerged as potential biomarkers for predicting type 2 diabetes risk in adults but have yet to be applied to youth. Therefore, the purpose of this study was to identify changes in miRNA expression among Latino youth with prediabetes (4 female/2 male, ages 14-16, BMI percentile 99 ±.2) who participated in a 12-week lifestyle intervention focused on increasing physical activity and improving nutrition-related behaviors.
ContributorsKarch, Jamie (Co-author) / Day, Samantha (Co-author) / Shaibi, Gabriel (Thesis director) / Coletta, Dawn (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
171777-Thumbnail Image.png
Description
Organic light-emitting diodes (OLEDs) have been successfully implemented in various display applications owing to rapid advancements in material design and device architecture. Their success in the display industry has ignited a rising interest in applying OLEDs for solid-state lighting applications through the development of white OLEDs (WOLEDs). However, to enter

Organic light-emitting diodes (OLEDs) have been successfully implemented in various display applications owing to rapid advancements in material design and device architecture. Their success in the display industry has ignited a rising interest in applying OLEDs for solid-state lighting applications through the development of white OLEDs (WOLEDs). However, to enter the market as a serious competitor, WOLEDs must achieve excellent color quality, high external quantum efficiency (EQE) as well as a long operational lifetime. In this research, novel materials and device architectures were explored to improve the performance of single-stack WOLEDs. A new Pt-based phosphorescent emitter, Pt2O2-p2m, was examined as a single emissive emitter for the development of a stable and efficient single-doped WOLED. A bilayer structure was employed to balance the charges carriers within the emissive layer resulting in low efficiency roll-off at high brightness, realizing a peak EQE of 21.5% and EQEs of 20% at 1000 cd m-2 and 15.3% at 7592 cd m-2. A novel phosphorescent/fluorescent, or hybrid, WOLED device architecture was also proposed. To gather a thorough understanding of blue fluorescent OLEDs prior to its use in a WOLED, a study was conducted to investigate the impact of the material selection on the device performance. The use of an anthracene type host demonstrated an improvement to the operational stability of the blue OLED by reducing the occurrence of degradation events. Additionally, various dopant concentrations and blocking materials revealed vastly different efficiency and lifetime results. Finally, a Pd (II) complex, Pd3O8-Py5, with efficient amber-colored aggregate emission was employed to produce a WOLED. Various host materials were investigated to achieve balanced white emission and the addition of an interlayer composed of a high triplet energy material was used to reduce quenching effects. Through this strategy, a color stable WOLED device with a peak EQE of 45% and an estimated LT95 over 50,000 hours at 1000 cd m-2 was realized. The comprehensive performance of the proposed device architecture competes with WOLED devices that are commercially available and reported within the literature domain, providing a strong foundation to further advance the development of highly efficient and stable single-stack WOLEDs.
ContributorsAmeri, Lydia (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2022
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021
Description

Sulfate deficiency is seen in children with autism through increased urinary excretion of sulfate and low plasma sulfate levels. Potential factors impacting reduced sulfation include phenosulfotransferase activity, sulfate availability, and the presence of the gut toxin p-cresol. Epsom salt baths, vitamin supplementation, and fecal microbiota transplant therapy are all potential

Sulfate deficiency is seen in children with autism through increased urinary excretion of sulfate and low plasma sulfate levels. Potential factors impacting reduced sulfation include phenosulfotransferase activity, sulfate availability, and the presence of the gut toxin p-cresol. Epsom salt baths, vitamin supplementation, and fecal microbiota transplant therapy are all potential treatments with promising results. Sulfate levels have potential for use as a diagnostic biomarker, allowing for earlier diagnosis and intervention.

ContributorsErickson, Payton (Author) / Adams, James (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
Description

One of the identified health risk areas for human spaceflight is infectious disease, particularly involving environmental microorganisms already found on the International Space Station (ISS). In particular, bacteria belonging to the Burkholderia cepacia complex (Bcc) which can cause human disease in those who are immunocompromised, have been identified in the

One of the identified health risk areas for human spaceflight is infectious disease, particularly involving environmental microorganisms already found on the International Space Station (ISS). In particular, bacteria belonging to the Burkholderia cepacia complex (Bcc) which can cause human disease in those who are immunocompromised, have been identified in the ISS water supply. This present study characterized the effect of spaceflight analog culture conditions on Bcc to certain physiological stresses (acid and thermal as well as intracellular survival in U927 human macrophage cells). The NASA-designed Rotating Wall Vessel (RWV) bioreactor was used as the spaceflight analogue culture system in these studies to grow Bcc bacterial cells under Low Shear Modeled Microgravity (LSMMG) conditions. Results show that LSMMG culture increased the resistance of Bcc to both acid and thermal stressors, but did not alter phagocytic uptake in 2-D monolayers of human monocytes.

ContributorsVu, Christian-Alexander (Author) / Nickerson, Cheryl (Thesis director) / Barrila, Jennifer (Committee member) / Ott, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

The Healthy Pregnancy Summit is a collection of videos from a variety of specialists detailing how to have a healthy pregnancy and healthy child, based on the latest scientific and medical information. This project summarizes each presentation, and compares to the Healthy Child Guide, a document supplementary to the summit.

The Healthy Pregnancy Summit is a collection of videos from a variety of specialists detailing how to have a healthy pregnancy and healthy child, based on the latest scientific and medical information. This project summarizes each presentation, and compares to the Healthy Child Guide, a document supplementary to the summit. Finally, this project analyzes the overall usefulness of the summit and each presentation, and suggests areas for improvement.

ContributorsKragenbring, Kylee (Author) / Adams, James (Thesis director) / Matthews, Julie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
161961-Thumbnail Image.png
Description
Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient

Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient and stable electronics. The development of efficient and stable deep blue OLED devices remains a challenge that has obstructed the progress of large-scale OLED commercialization. One approach was taken to achieve a deep blue emitter through a color tuning strategy. A new complex, PtNONS56-dtb, was designed and synthesized by controlling the energy gap between T1 and T2 energy states to achieve narrowed and blueshifted emission spectra. This emitter material showed an emission spectrum at 460 nm with a FWHM of 59 nm at room temperature in PMMA, and the PtNONS56-dtb-based device exhibited a peak EQE of 8.5% with CIE coordinates of (0.14, 0.27). A newly developed host and electron blocking materials were demonstrated to achieve efficient and stable OLED devices. The indolocarbazole-based materials were designed to have good hole mobility and high triplet energy. BCN34 as an electron blocking material achieved the estimated LT80 of 12509 h at 1000 cd m-2 with a peak EQE of 30.3% in devices employing Pd3O3 emitter. Additionally, a device with bi-layer emissive layer structure, using BCN34 and CBP as host materials doped with PtN3N emitter, achieved a peak EQE of 16.5% with the LT97 of 351 h at 1000 cd m-2. A new neuromorphic device using Ru(bpy)3(PF6)2 as an active layer was designed to emulate the short-term characteristics of a biological synapse. This memristive device showed a similar operational mechanism with biological synapse through the movement of ions and electronic charges. Furthermore, the performance of the device showed tunability by adding salt. Ultimately, the device with 2% LiClO4 salt shows similar timescales to short-term plasticity characteristics of biological synapses.
ContributorsShin, Samuel (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
168283-Thumbnail Image.png
Description
Over the past three decades, significant progress in the development of organic light-emitting diodes (OLEDs) has been achieved, enabling OLEDs to become a main component in state-of-the-art displays and next generation solid-state lighting. As this technology advances, it is highly desirable to further improve the device efficiency and operational stability

Over the past three decades, significant progress in the development of organic light-emitting diodes (OLEDs) has been achieved, enabling OLEDs to become a main component in state-of-the-art displays and next generation solid-state lighting. As this technology advances, it is highly desirable to further improve the device efficiency and operational stability to drive the success of OLEDs in future display and lighting applications. This dissertation aims at developing novel organic emitting materials covering visible and near-infrared (NIR) emissions for efficient and table OLEDs. Firstly, a series of tetradentate Pd(II) complexes, which have attractive phosphorescent aggregate emission performance especially at high brightness level in device settings, have been developed. The luminescent lifetime of Pd(II) complex aggregates was demonstrated to be shorter than 1 μs with a close-to-unity photoluminescence quantum yield. Moreover, a systematic study regarding structure-property relationship was conducted on four tetradentate Pd(II) complexes, i.e., Pd3O3, Pd3O8-P, Pd3O8-Py2, and Pd3O8-Py5, featuring aggregate emission. As a result, an extremely efficient and stable OLED device utilizing Pd3O8-Py5 was achieved. It demonstrated a peak external quantum efficiency (EQE) of 37.3% with a reduced efficiency roll-off retaining a high EQE of 32.5% at 10000 cd m-2, and an estimated LT95 lifetime (time to 95% of the initial luminance) of 48246 h at 1000 cd m-2. Secondly, there is an increasing demand for NIR OLEDs with emission spectra beyond 900 nm to expand their applications in biometric authentication, night vision display, and telecommunication, etc. A stable and efficient NIR Pt(II) porphyrin complex named PtTPTNP-F8 was developed, and exhibited an electroluminescent spectrum at 920 nm. By carefully choosing the host materials, an PtTPTNP-F8 based NIR OLED achieved a EQE of 1.9%. Furthermore, an PtTPTNP-F8 OLED fabricated in a stable device structure demonstrated extraordinary operational stability with LT99 of >1000 h at 20 mA cm-2. Lastly, a series of imidazole-based blue Pt(II) complexes were developed and studied. Results indicated that structural modification of ligand molecules effectively tuned the emission spectral wavelength and bandwidth. Two blue complexes, i.e., Pt2O2 P2M and Pt2O2-PPy5-M, emitting at 472 and 476 nm respectively, exhibited narrow-band emission spectra with a full width at half maximum of 16 nm.
ContributorsCao, Linyu (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021
165870-Thumbnail Image.png
Description

The purpose of this project was to develop a new questionnaire that was comprehensive and included symptoms of autism and related disorders. 28 parents of children with autism and two adults with autism were interviewed and asked to fill out the questionnaire and rate their child’s symptoms based on the

The purpose of this project was to develop a new questionnaire that was comprehensive and included symptoms of autism and related disorders. 28 parents of children with autism and two adults with autism were interviewed and asked to fill out the questionnaire and rate their child’s symptoms based on the available scale. From their responses, we were able to edit and improve the questionnaire to make it clearer and more concise. We added new symptoms and improved the descriptions of the symptoms listed. The new version of the questionnaire will be edited after interviewing the same 30 people again. After, it will need to be validated by a large study of around 300 people. The questionnaire will be used in an app format and help parents rate their child’s symptoms during clinical studies of medical treatments.

ContributorsFoote, Sophia (Author) / Adams, James (Thesis director) / Duane, Drake (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / School of International Letters and Cultures (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-05