Matching Items (159)
150418-Thumbnail Image.png
Description
Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.
ContributorsSoho, Edmé L (Author) / Wirkus, Stephen (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2011
150275-Thumbnail Image.png
Description
ABSTRACT Group III-nitride semiconductor materials have been commercially used in fabrication of light-emitting diodes (LEDs) and laser diodes (LDs) covering the spectral range from UV to visible and infrared, and exhibit unique properties suitable for modern optoelectronic applications. Great advances have recently happened in the research and development in high-power

ABSTRACT Group III-nitride semiconductor materials have been commercially used in fabrication of light-emitting diodes (LEDs) and laser diodes (LDs) covering the spectral range from UV to visible and infrared, and exhibit unique properties suitable for modern optoelectronic applications. Great advances have recently happened in the research and development in high-power and high-efficiency blue-green-white LEDs, blue LDs and other optoelectronic applications. However, there are still many unsolved challenges with these materials. In this dissertation, several issues concerning structural, electronic and optical properties of III-nitrides have been investigated using a combination of transmission electron microscopy (TEM), electron holography (EH) and cathodoluminescence (CL) techniques. First, a trend of indium chemical inhomogeneity has been found as the indium composition increases for the InGaN epitaxial layers grown by hydride vapor phase epitaxy. Second, different mechanisms contributing to the strain relaxation have been studied for non-polar InGaN epitaxial layers grown on zinc oxide (ZnO) substrate. Third, various structural morphologies of non-polar InGaN epitaxial layers grown on free-standing GaN substrate have been investigated. Fourth, the effect of the growth temperature on the performance of GaN lattice-matched InAlN electron blocking layers has been studied. Finally, the electronic and optical properties of GaN nanowires containing a AlN/GaN superlattice structure have been investigated showing relatively small internal electric field and superlattice- and defect-related emissions along the nanowires.
ContributorsSun, Kewei (Author) / Ponce, Fernando (Thesis advisor) / Smith, David (Committee member) / Treacy, Michael (Committee member) / Drucker, Jeffery (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2011
150301-Thumbnail Image.png
Description
This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice

This thesis focuses on the theoretical work done to determine thermodynamic properties of a chalcopyrite thin-film material for use as a photovoltaic material in a tandem device. The material of main focus here is ZnGeAs2, which was chosen for the relative abundance of constituents, favorable photovoltaic properties, and good lattice matching with ZnSnP2, the other component in this tandem device. This work is divided into two main chapters, which will cover: calculations and method to determine the formation energy and abundance of native point defects, and a model to calculate the vapor pressure over a ternary material from first-principles. The purpose of this work is to guide experimental work being done in tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such that it can be used as a photovoltaic. Since properties of photovoltaic depend greatly on defect concentrations and film quality, a theoretical understanding of how laboratory conditions affect these properties is very valuable. The work done here is from first-principles and utilizes density functional theory using the local density approximation. Results from the native point defect study show that the zinc vacancy (VZn) and the germanium antisite (GeZn) are the more prominent defects; which most likely produce non-stoichiometric films. The vapor pressure model for a ternary system is validated using known vapor pressure for monatomic and binary test systems. With a valid ternary system vapor pressure model, results show there is a kinetic barrier to decomposition for ZnGeAs2.
ContributorsTucker, Jon R (Author) / Van Schilfgaarde, Mark (Thesis advisor) / Newman, Nathan (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2011
152284-Thumbnail Image.png
Description
Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at

Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at higher current densities and elevated temperatures. Gold-based metallization was implemented on GaAs devices because it uniquely forms a very low resistance ohmic contact and gold interconnects have superior electrical and thermal conductivity properties. Gold (Au) was also believed to have improved resistance to electromigration due to its higher melting temperature, yet electromigration reliability data on passivated Au interconnects is scarce and inadequate in the literature. Therefore, the objective of this research was to characterize the electromigration lifetimes of passivated Au interconnects under precisely controlled stress conditions with statistically relevant quantities to obtain accurate model parameters essential for extrapolation to normal operational conditions. This research objective was accomplished through measurement of electromigration lifetimes of large quantities of passivated electroplated Au interconnects utilizing high-resolution in-situ resistance monitoring equipment. Application of moderate accelerated stress conditions with a current density limited to 2 MA/cm2 and oven temperatures in the range of 300°C to 375°C avoided electrical overstress and severe Joule-heated temperature gradients. Temperature coefficients of resistance (TCRs) were measured to determine accurate Joule-heated Au interconnect film temperatures. A failure criterion of 50% resistance degradation was selected to prevent thermal runaway and catastrophic metal ruptures that are problematic of open circuit failure tests. Test structure design was optimized to reduce resistance variation and facilitate failure analysis. Characterization of the Au microstructure yielded a median grain size of 0.91 ìm. All Au lifetime distributions followed log-normal distributions and Black's model was found to be applicable. An activation energy of 0.80 ± 0.05 eV was measured from constant current electromigration tests at multiple temperatures. A current density exponent of 1.91 was extracted from multiple current densities at a constant temperature. Electromigration-induced void morphology along with these model parameters indicated grain boundary diffusion is dominant and the void nucleation mechanism controlled the failure time.
ContributorsKilgore, Stephen (Author) / Adams, James (Thesis advisor) / Schroder, Dieter (Thesis advisor) / Krause, Stephen (Committee member) / Gaw, Craig (Committee member) / Arizona State University (Publisher)
Created2013
151415-Thumbnail Image.png
Description
In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals in the plasma react with the carbon groups leading to carbon removal for the ILD films. Results indicate that an N2 plasma forms an amide-like layer on the surface which apparently leads to reduced carbon abstraction from an H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl (Si-OH) groups following the plasma exposure. Increased temperature (380 °C) processing leads to a reduction of the hydroxyl group formation compared to ambient temperature processes, resulting in reduced changes of the dielectric constant. For CMP Cu surfaces, the carbonate contamination was removed by an H2 plasma process at elevated temperature while the C-C and C-H contamination was removed by an N2 plasma process at elevated temperature. The second part of this study examined oxide stability and cleaning of Ru surfaces as well as consequent Cu film thermal stability with the Ru layers. The ~2 monolayer native Ru oxide was reduced after H-plasma processing. The thermal stability or islanding of the Cu film on the Ru substrate was characterized by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu islanding was detected and was described in terms of grain boundary grooving and surface and interface energies. The thermal stability of 7 nm Ti, Pt and Ru ii interfacial adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 nm) have been investigated in the third part. The barrier properties and interfacial stability have been evaluated by Rutherford backscattering spectrometry (RBS). Atomic force microscopy (AFM) was used to measure the surfaces before and after annealing, and all the surfaces are relatively smooth excluding islanding or de-wetting phenomena as a cause of the instability. The RBS showed no discernible diffusion across the adhesion layer/Ta and Ta/Si interfaces which provides a stable underlying layer. For a Ti interfacial layer RBS indicates that during 400 °C annealing Ti interdiffuses through the Cu film and accumulates at the surface. For the Pt/Cu system Pt interdiffuion is detected which is less evident than Ti. Among the three adhesion layer candidates, Ru shows negligible diffusion into the Cu film indicating thermal stability at 400 °C.
ContributorsLiu, Xin (Author) / Nemanich, Robert (Thesis advisor) / Chamberlin, Ralph (Committee member) / Chen, Tingyong (Committee member) / Smith, David (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2012
151315-Thumbnail Image.png
Description
The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater

The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater flexibility for achieving a variety of alloy compositions. Furthermore, the nanowire geometry permits simultaneous incorporation of a wide range of compositions on a single substrate. Such controllable alloy composition variation can be realized either within an individual nanowire or between distinct nanowires across a substrate. This dissertation explores the control of spatial composition variation in ternary alloy nanowires. Nanowires were grown by the vapor-liquid-solid (VLS) mechanism using chemical vapor deposition (CVD). The gas-phase supersaturation was considered in order to optimize the deposition morphology. Composition and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). Optical properties were investigated through photoluminescence (PL) measurements. The chalcogenides selected as alloy endpoints were lead sulfide (PbS), cadmium sulfide (CdS), and cadmium selenide (CdSe). Three growth modes of PbS were identified, which included contributions from spontaneously generated catalyst. The resulting wires were found capable of lasing with wavelengths over 4000 nm, representing the longest known wavelength from a sub-wavelength wire. For CdxPb1-xS nanowires, it was established that the cooling process significantly affects the alloy composition and structure. Quenching was critical to retain metastable alloys with x up to 0.14, representing a new composition in nanowire form. Alternatively, gradual cooling caused phase segregation, which created heterostructures with light emission in both the visible and mid-infrared regimes. The CdSSe alloy system was fully explored for spatial composition variation. CdSxSe1-x nanowires were grown with composition variation across the substrate. Subsequent contact printing preserved the designed composition gradient and led to the demonstration of a variable wavelength photodetector device. CdSSe axial heterostructure nanowires were also achieved. The growth process involved many variables, including a deliberate and controllable change in substrate temperature. As a result, both red and green light emission was detected from single nanowires.
ContributorsNichols, Patricia (Author) / Ning, Cun-Zheng (Thesis advisor) / Carpenter, Ray (Committee member) / Bennett, Peter (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
151507-Thumbnail Image.png
Description
Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one

Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.
ContributorsVega-Guzmán, José Manuel, 1982- (Author) / Sulov, Sergei K (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Platte, Rodrigo (Committee member) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2013
152101-Thumbnail Image.png
Description
This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included

This thesis is a qualitative research study that focuses on siblings of children with Autistic Spectrum Disorder (ASD). Even though it is expected that having a child with ASD in the family will influence the whole family including siblings of the child with ASD, the sibling population is rarely included in research related to children with ASD, and there is only limited services available for them. This exploratory study (n=6) is aimed at better understanding the siblings' lives in their family settings in order to identify the siblings' unmet needs and determine how they have been influenced by the child with ASD. This study is also aimed at identifying the most appropriate support for the siblings to help them cope better. The study followed the Resiliency Model of Family Stress, Adjustment, and Adaptation and a narrative theory approach. An in-depth interview with the parents was conducted for the study, so the findings reflect the parents' perception of the siblings. All the themes emerged into two categories: life in the family setting and supports. The findings indicate that the families are striving for balance between the siblings and the children with ASD, but still tend to focus more on the children with ASD. Also, the families tend to have autonomous personal support systems. The parents tend to perceive that these personal support systems are good enough for the siblings; therefore, the parents do not feel that formal support for the siblings was necessary. As a result of the findings, recommendations are made for the organizations that work with individuals with ASD to provide more appropriate services for the families of children with ASD, including siblings. Also, recommendations are made for future studies to clarify more factors related to the siblings due to the limitation of this study; the siblings' lives were reflected vicariously via the parents.
ContributorsJeong, Seong Hae (Author) / Marsiglia, Flavio F (Thesis advisor) / Ayers, Stephanie (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2013
152390-Thumbnail Image.png
Description
Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have

Of the potential technologies for pre-combustion capture, membranes offer the advantages of being temperature resistant, able to handle large flow rates, and having a relatively small footprint. A significant amount of research has centered on the use of polymeric and microporous inorganic membranes to separate CO2. These membranes, however, have limitations at high temperature resulting in poor permeation performance. To address these limitations, the use of a dense dual-phase membrane has been studied. These membranes are composed of conductive solid and conductive liquid phases that have the ability to selectively permeate CO2 by forming carbonate ions that diffuse through the membrane at high temperature. The driving force for transport through the membrane is a CO2 partial pressure gradient. The membrane provides a theoretically infinite selectivity. To address stability of the ceramic-carbonate dual-phase membrane for CO2 capture at high temperature, the ceramic phase of the membrane was studied and replaced with materials previously shown to be stable in harsh conditions. The permeation properties and stability of La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF)-carbonate, La0.85Ce0.1Ga0.3Fe0.65Al0.05O3-δ (LCGFA)-carbonate, and Ce0.8Sm0.2O1.9 (SDC)-carbonate membranes were examined under a wide range of experimental conditions at high temperature. LSCF-carbonate membranes were shown to be unstable without the presence of O2 due to reaction of CO2 with the ceramic phase. In the presence of O2, however, the membranes showed stable permeation behavior for more than one month at 900oC. LCGFA-carbonate membranes showed great chemical and permeation stability in the presence of various conditions including exposure to CH4 and H2, however, the permeation performance was quite low when compared to membranes in the literature. Finally, SDC-carbonate membranes showed great chemical and permeation stability both in a CO2:N2 environment for more than two weeks at 900oC as well as more than one month of exposure to simulated syngas conditions at 700oC. Ceramic phase chemical stability increased in the order of LSCF < LCGFA < SDC while permeation performance increased in the order of LCGFA < LSCF < SDC.
ContributorsNorton, Tyler (Author) / Lin, Jerry Y.S. (Thesis advisor) / Alford, Terry (Committee member) / Lind, Mary Laura (Committee member) / Smith, David (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2013
150620-Thumbnail Image.png
Description
Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is

Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is sensitive to the lateral characteristic dimension determined by the microstructure. Specific semi-polar plane growth is suggested for reducing quantum-confined Stark effect. The macroscopic electrostatic field from the polarization discontinuity in the heterostructures is discussed, b ased on that, the band diagram of InGaN/GaN quantum well/barrier and AlGaN/GaN heterojunction is obtained from the self-consistent solution of Schrodinger and Poisson equations. New device design such as triangular quantum well with the quenched polarization field is proposed. Electron holography in the transmission electron microscopy is used to examine the electrostatic potential under polarization effects. The measured potential energy profiles of heterostructure are compared with the band simulation, and evidences of two-dimensional hole gas (2DHG) in a wurtzite AlGaN/ AlN/ GaN superlattice, as well as quasi two-dimensional electron gas (2DEG) in a zinc-blende AlGaN/GaN are found. The large polarization discontinuity of AlN/GaN is the main source of the 2DHG of wurtzite nitrides, while the impurity introduced during the growth of AlGaN layer provides the donor states that to a great extent balance the free electrons in zinc-blende nitrides. It is also found that the quasi-2DEG concentration in zinc-blende AlGaN/GaN is about one order of magnitude lower than the wurtzite AlGaN/GaN, due to the absence of polarization. Finally, the InAlN/GaN lattice-matched epitaxy, which ideally has a zero piezoelectric polarization and strong spontaneous polarization, is experimentally studied. The breakdown in compositional homogeneity is triggered by threading dislocations with a screw component propagating from the GaN underlayer, which tend to open up into V-grooves at a certain thickness of the InxAl1-xN layer. The V-grooves coalesce at 200 nm and are filled with material that exhibits a significant drop in indium content and a broad luminescence peak. The structural breakdown is due to heterogeneous nucleation and growth at the facets of the V-grooves.
ContributorsWei, Qiyuan (Author) / Ponce, Fernando A. (Thesis advisor) / Tsen, Kong-Thon (Committee member) / Shumway, John (Committee member) / Menéndez, Jose (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012