Matching Items (172)
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
150046-Thumbnail Image.png
Description
This thesis describes a synthetic task environment, CyberCog, created for the purposes of 1) understanding and measuring individual and team situation awareness in the context of a cyber security defense task and 2) providing a context for evaluating algorithms, visualizations, and other interventions that are intended to improve cyber situation

This thesis describes a synthetic task environment, CyberCog, created for the purposes of 1) understanding and measuring individual and team situation awareness in the context of a cyber security defense task and 2) providing a context for evaluating algorithms, visualizations, and other interventions that are intended to improve cyber situation awareness. CyberCog provides an interactive environment for conducting human-in-loop experiments in which the participants of the experiment perform the tasks of a cyber security defense analyst in response to a cyber-attack scenario. CyberCog generates the necessary performance measures and interaction logs needed for measuring individual and team cyber situation awareness. Moreover, the CyberCog environment provides good experimental control for conducting effective situation awareness studies while retaining realism in the scenario and in the tasks performed.
ContributorsRajivan, Prashanth (Author) / Femiani, John (Thesis advisor) / Cooke, Nancy J. (Thesis advisor) / Lindquist, Timothy (Committee member) / Gary, Kevin (Committee member) / Arizona State University (Publisher)
Created2011
149644-Thumbnail Image.png
Description
Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the

Intuitive decision making refers to decision making based on situational pattern recognition, which happens without deliberation. It is a fast and effortless process that occurs without complete awareness. Moreover, it is believed that implicit learning is one means by which a foundation for intuitive decision making is developed. Accordingly, the present study investigated several factors that affect implicit learning and the development of intuitive decision making in a simulated real-world environment: (1) simple versus complex situational patterns; (2) the diversity of the patterns to which an individual is exposed; (3) the underlying mechanisms. The results showed that simple patterns led to higher levels of implicit learning and intuitive decision-making accuracy than complex patterns; increased diversity enhanced implicit learning and intuitive decision-making accuracy; and an embodied mechanism, labeling, contributes to the development of intuitive decision making in a simulated real-world environment. The results suggest that simulated real-world environments can provide the basis for training intuitive decision making, that diversity is influential in the process of training intuitive decision making, and that labeling contributes to the development of intuitive decision making. These results are interpreted in the context of applied situations such as military applications involving remotely piloted aircraft.
ContributorsCovas-Smith, Christine Marie (Author) / Cooke, Nancy J. (Thesis advisor) / Patterson, Robert (Committee member) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Arizona State University (Publisher)
Created2011
150067-Thumbnail Image.png
Description
The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems:

The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems: 1) lack of visibility (parts and tools were difficult to identify), 2) high memory demands, and 3) insufficient user feedback. In an effort to improve completion rate and eliminate error, cognitive aids were designed utilizing human factors principles that would replace existing manufacturer visual aids. Then, a usability test was conducted, which compared the endoscope reprocessing performance of novices using the standard manufacturer-provided visual aids and the new cognitive aids. Participants successfully completed 87.1% of the reprocessing procedure in the experimental condition with the use of the cognitive aids, compared to 46.3% in the control condition using only existing support materials. Twenty-five of sixty subtasks showed significant improvement in completion rates. When given a cognitive aid designed with human factors principles, participants were able to more successfully complete the reprocessing task. This resulted in an endoscope that was more likely to be safe for patient use.
ContributorsJolly, Jonathan D (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
150085-Thumbnail Image.png
Description
The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.
ContributorsMaghiar, Marcel M (Author) / Wiezel, Avi (Thesis advisor) / Mitropoulos, Panagiotis (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
150139-Thumbnail Image.png
Description
Although there are many forms of organization on the Web, one of the most prominent ways to organize web content and websites are tags. Tags are keywords or terms that are assigned to a specific piece of content in order to help users understand the common relationships between pieces of

Although there are many forms of organization on the Web, one of the most prominent ways to organize web content and websites are tags. Tags are keywords or terms that are assigned to a specific piece of content in order to help users understand the common relationships between pieces of content. Tags can either be assigned by an algorithm, the author, or the community. These tags can also be organized into tag clouds, which are visual representations of the structure and organization contained implicitly within these tags. Importantly, little is known on how we use these different tagging structures to understand the content and structure of a given site. This project examines 2 different characteristics of tagging structures: font size and spatial orientation. In order to examine how these different characteristics might interact with individual differences in attentional control, a measure of working memory capacity (WMC) was included. The results showed that spatial relationships affect how well users understand the structure of a website. WMC was not shown to have any significant effect; neither was varying the font size. These results should better inform how tags and tag clouds are used on the Web, and also provide an estimation of what properties to include when designing and implementing a tag cloud on a website.
ContributorsBanas, Steven (Author) / Sanchez, Christopher A (Thesis advisor) / Branaghan, Russell (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2011
151474-Thumbnail Image.png
Description
The medical industry has benefited greatly by electronic integration resulting in the explosive growth of active medical implants. These devices often treat and monitor chronic health conditions and require very minimal power usage. A key part of these medical implants is an ultra-low power two way wireless communication system. This

The medical industry has benefited greatly by electronic integration resulting in the explosive growth of active medical implants. These devices often treat and monitor chronic health conditions and require very minimal power usage. A key part of these medical implants is an ultra-low power two way wireless communication system. This enables both control of the implant as well as relay of information collected. This research has focused on a high performance receiver for medical implant applications. One commonly quoted specification to compare receivers is energy per bit required. This metric is useful, but incomplete in that it ignores Sensitivity level, bit error rate, and immunity to interferers. In this study exploration of receiver architectures and convergence upon a comprehensive solution is done. This analysis is used to design and build a system for validation. The Direct Conversion Receiver architecture implemented for the MICS standard in 0.18 µm CMOS process consumes approximately 2 mW is competitive with published research.
ContributorsStevens, Mark (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
151685-Thumbnail Image.png
Description
A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a

A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a viable approach to obtaining these short wavelengths. To assess the feasibility of such a system, an effective medium model of a chain of Noble metal plasmonic nanospheres is developed, leading to a straightforward calculation of the waveguiding properties. Evaluation of other models for such structures that have appeared in the literature, including an eigenvalue problem nearest neighbor approximation, a multi- neighbor approximation with retardation, and a method-of-moments method for a finite chain, show conflicting expectations of such a structure. In particular, recent publications suggest the possibility of regions of invalidity for eigenvalue problem solutions that are considered far below the onset of guidance, and for solutions that assume the loss is low enough to justify perturbation approximations. Even the published method-of-moments approach suffers from an unjustified assumption in the original interpretation, leading to overly optimistic estimations of the attenuation of the plasmon guided wave. In this work it is shown that the method of moments approach solution was dominated by the radiation from the source dipole, and not the waveguiding behavior claimed. If this dipolar radiation is removed the remaining fields ought to contain the desired guided wave information. Using a Prony's-method-based algorithm the dispersion properties of the chain of spheres are assessed at two frequencies, and shown to be dramatically different from the optimistic expectations in much of the literature. A reliable alternative to these models is to replace the chain of spheres with an effective medium model, thus mapping the chain problem into the well-known problem of the dielectric rod. The solution of the Green function problem for excitation of the symmetric longitudinal mode (TM01) is performed by numerical integration. Using this method the frequency ranges over which the rod guides and the associated attenuation are clearly seen. The effective medium model readily allows for variation of the sphere size and separation, and can be taken to the limit where instead of a chain of spheres we have a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the attenuation of the guided wave. Future work is proposed to simulate the chain of photonic nanospheres and the nanowire using finite-difference time-domain to verify observed guided behavior in the Green's function method devised in this thesis and to simulate the proposed nanosensing devices.
ContributorsHale, Paul (Author) / Diaz, Rodolfo E (Thesis advisor) / Goodnick, Stephen (Committee member) / Aberle, James T., 1961- (Committee member) / Palais, Joseph (Committee member) / Arizona State University (Publisher)
Created2013
152143-Thumbnail Image.png
Description
Radio frequency (RF) transceivers require a disproportionately high effort in terms of test development time, test equipment cost, and test time. The relatively high test cost stems from two contributing factors. First, RF transceivers require the measurement of a diverse set of specifications, requiring multiple test set-ups and long test

Radio frequency (RF) transceivers require a disproportionately high effort in terms of test development time, test equipment cost, and test time. The relatively high test cost stems from two contributing factors. First, RF transceivers require the measurement of a diverse set of specifications, requiring multiple test set-ups and long test times, which complicates load-board design, debug, and diagnosis. Second, high frequency operation necessitates the use of expensive equipment, resulting in higher per second test time cost compared with mixed-signal or digital circuits. Moreover, in terms of the non-recurring engineering cost, the need to measure complex specfications complicates the test development process and necessitates a long learning process for test engineers. Test time is dominated by changing and settling time for each test set-up. Thus, single set-up test solutions are desirable. Loop-back configuration where the transmitter output is connected to the receiver input are used as the desirable test set- up for RF transceivers, since it eliminates the reliance on expensive instrumentation for RF signal analysis and enables measuring multiple parameters at once. In-phase and Quadrature (IQ) imbalance, non-linearity, DC offset and IQ time skews are some of the most detrimental imperfections in transceiver performance. Measurement of these parameters in the loop-back mode is challenging due to the coupling between the receiver (RX) and transmitter (TX) parameters. Loop-back based solutions are proposed in this work to resolve this issue. A calibration algorithm for a subset of the above mentioned impairments is also presented. Error Vector Magnitude (EVM) is a system-level parameter that is specified for most advanced communication standards. EVM measurement often takes extensive test development efforts, tester resources, and long test times. EVM is analytically related to system impairments, which are typically measured in a production test i environment. Thus, EVM test can be eliminated from the test list if the relations between EVM and system impairments are derived independent of the circuit implementation and manufacturing process. In this work, the focus is on the WLAN standard, and deriving the relations between EVM and three of the most detrimental impairments for QAM/OFDM based systems (IQ imbalance, non-linearity, and noise). Having low cost test techniques for measuring the RF transceivers imperfections and being able to analytically compute EVM from the measured parameters is a complete test solution for RF transceivers. These techniques along with the proposed calibration method can be used in improving the yield by widening the pass/fail boundaries for transceivers imperfections. For all of the proposed methods, simulation and hardware measurements prove that the proposed techniques provide accurate characterization of RF transceivers.
ContributorsNassery, Afsaneh (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152259-Thumbnail Image.png
Description
Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of

Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of design flexibility, reduced use of off-chip components, and better programmability to enable advanced controls. They also demonstrate better immunity to noise, enhances tolerance to the process, voltage and temperature (PVT) variations, low chip area and as a result low cost. It enables processing in digital domain requiring a need of analog-digital interfacing circuit viz. Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC). A Digital to Pulse Width Modulator (DPWM) acts as time domain DAC required in the control loop to modulate the ON time of the Power-MOSFETs. The accuracy and efficiency of the DPWM creates the upper limit to the steady state voltage ripple of the DC - DC converter and efficiency in low load conditions. This thesis discusses the prevalent architectures for DPWM in switched mode DC - DC converters. The design of a Hybrid DPWM is presented. The DPWM is 9-bit accurate and is targeted for a Synchronous Buck Converter with a switching frequency of 1.0 MHz. The design supports low power mode(s) for the buck converter in the Pulse Frequency Modulation (PFM) mode as well as other fail-safe features. The design implementation is digital centric making it robust across PVT variations and portable to lower technology nodes. Key target of the design is to reduce design time. The design is tested across large Process (+/- 3σ), Voltage (1.8V +/- 10%) and Temperature (-55.0 °C to 125 °C) and is in the process of tape-out.
ContributorsKumar, Amit (Author) / Bakkaloglu, Bertan (Thesis advisor) / Song, Hongjiang (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013