Matching Items (34)
157906-Thumbnail Image.png
Description
Presented is a design approach and test of a novel compact waveguide that demonstrated the outer dimensions of a rectangular waveguide through the introduction of parallel raised strips, or flanges, which run the length of the rectangular waveguide along the direction of wave propagation. A 10GHz waveguide was created

Presented is a design approach and test of a novel compact waveguide that demonstrated the outer dimensions of a rectangular waveguide through the introduction of parallel raised strips, or flanges, which run the length of the rectangular waveguide along the direction of wave propagation. A 10GHz waveguide was created with outer dimensions of a=9.0mm and b=3.6mm compared to a WR-90 rectangular waveguide with outer dimensions of a=22.86mm and b=10.16mm which the area is over 7 times the area. The first operating bandwidth for a hollow waveguide of dimensions a=9.0mm and b=3.6mm starts at 16.6GHz a 40% reduction in cutoff frequency.

The prototyped and tested compact waveguide demonstrated an operating close to the predicted 2GHz with predicted vs measured injection loss generally within 0.25dB and an overall measured injection loss of approximately 4.67dB/m within the operating bandwidth.
ContributorsJones, Jimmy, Ph.D (Author) / Pan, George (Thesis advisor) / Palais, Joseph (Committee member) / Aberle, James T., 1961- (Committee member) / Young, William (Committee member) / Arizona State University (Publisher)
Created2019
157839-Thumbnail Image.png
Description
This dissertation explores thermal effects and electrical characteristics in metal-oxide-semiconductor field effect transistor (MOSFET) devices and circuits using a multiscale dual-carrier approach. Simulating electron and hole transport with carrier-phonon interactions for thermal transport allows for the study of complementary logic circuits with device level accuracy in electrical characteristics and thermal

This dissertation explores thermal effects and electrical characteristics in metal-oxide-semiconductor field effect transistor (MOSFET) devices and circuits using a multiscale dual-carrier approach. Simulating electron and hole transport with carrier-phonon interactions for thermal transport allows for the study of complementary logic circuits with device level accuracy in electrical characteristics and thermal effects. The electrical model is comprised of an ensemble Monte Carlo solution to the Boltzmann Transport Equation coupled with an iterative solution to two-dimensional (2D) Poisson’s equation. The thermal model solves the energy balance equations accounting for carrier-phonon and phonon-phonon interactions. Modeling of circuit behavior uses parametric iteration to ensure current and voltage continuity. This allows for modeling of device behavior, analyzing circuit performance, and understanding thermal effects.

The coupled electro-thermal approach, initially developed for individual n-channel MOSFET (NMOS) devices, now allows multiple devices in tandem providing a platform for better comparison with heater-sensor experiments. The latest electro-thermal solver allows simulation of multiple NMOS and p-channel MOSFET (PMOS) devices, providing a platform for the study of complementary MOSFET (CMOS) circuit behavior. Modeling PMOS devices necessitates the inclusion of hole transport and hole-phonon interactions. The analysis of CMOS circuits uses the electro-thermal device simulation methodology alongside parametric iteration to ensure current continuity. Simulating a CMOS inverter and analyzing the extracted voltage transfer characteristics verifies the efficacy of this methodology. This work demonstrates the effectiveness of the dual-carrier electro-thermal solver in simulating thermal effects in CMOS circuits.
ContributorsDaugherty, Robin (Author) / Vasileska, Dragica (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Ferry, David (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
157841-Thumbnail Image.png
Description
Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work

Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.
ContributorsGrout, Kevin Samuel (Author) / Kitchen, Jennifer N (Thesis advisor) / Khalil, Waleed (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Garrity, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
157530-Thumbnail Image.png
Description
The study of soft magnetic materials has been growing in popularity in recent years. Driving this interest are new applications for traditional electrical power-management components, such as inductors and transformers, which must be scaled down to the micro and nano scale while the frequencies of operation have been scaling u

The study of soft magnetic materials has been growing in popularity in recent years. Driving this interest are new applications for traditional electrical power-management components, such as inductors and transformers, which must be scaled down to the micro and nano scale while the frequencies of operation have been scaling up to the gigahertz range and beyond. The exceptional magnetic properties of the materials make them highly effective in these small-component applications, but the ability of these materials to provide highly-effective shielding has not been so thoroughly considered. Most shielding is done with traditional metals, such as aluminum, because of the relatively low cost of the material and high workability in shaping the material to meet size and dimensional requirements.

This research project focuses on analyzing the variance in shielding effectiveness and electromagnetic field effects of a thin film of Cobalt Zirconium Tantalum Boron (CZTB) in the band of frequencies most likely to require innovative solutions to long-standing problems of noise and interference. The measurements include Near H-Field attenuation and field effects, Far Field shielding, and Backscatter. Minor variances in the thickness and layering of sputter deposition can have significant changes electromagnetic signature of devices which radiate energy through the material.

The material properties presented in this research are H-Field attenuation, H-Field Flux Orientation, Far-Field Approximation, E Field Vector Directivity, H Field Vector Directivity, and Backscatter Magnitude. The results are presented, analyzed and explained using characterization techniques. Future work includes the effect of sputter deposition orientation, application to devices, and applicability in mitigating specific noise signals beyond the 5G band.
ContributorsMiller, Phillip Carl (Author) / Yu, Hongbin (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Blain Christen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2019