Matching Items (81)
152892-Thumbnail Image.png
Description
Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that integrates many processing elements such as CPU cores, GPU, video,

Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that integrates many processing elements such as CPU cores, GPU, video, image, and audio processors. As a result, optimization approaches targeting mobile computing needs to consider the platform at various levels of granularity.

Platform energy consumption and responsiveness are two major considerations for mobile systems since they determine the battery life and user satisfaction, respectively. In this work, the models for power consumption, response time, and energy consumption of heterogeneous mobile platforms are presented. Then, these models are used to optimize the energy consumption of baseline platforms under power, response time, and temperature constraints with and without introducing new resources. It is shown, the optimal design choices depend on dynamic power management algorithm, and adding new resources is more energy efficient than scaling existing resources alone. The framework is verified through actual experiments on Qualcomm Snapdragon 800 based tablet MDP/T. Furthermore, usage of the framework at both design and runtime optimization is also presented.
ContributorsGupta, Ujjwala (Author) / Ogras, Umit Y. (Thesis advisor) / Ozev, Sule (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2014
153039-Thumbnail Image.png
Description
Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented

Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented by designing a programmable digital controller. Despite variations in L and C values, the target dynamic response can be achieved by computing and programming the filter coefficients for a particular L and C. Besides, digital controllers have higher immunity to environmental changes such as temperature and aging of components. The second drawback of SCs is their poor efficiency during low load conditions if operated in Pulse Width Modulation (PWM) mode. However, if operated in Pulse Frequency Modulation (PFM) mode, better efficiency numbers can be achieved. A mostly-digital way of detecting PFM mode is implemented. Besides, a slow serial interface to program the chip, and a high speed serial interface to characterize mixed signal blocks as well as to ship data in or out for debug purposes are designed. The chip is taped out in 0.18µm IBM's radiation hardened CMOS process technology. A test board is built with the chip, external power FETs and driver IC. At the time of this writing, PWM operation, PFM detection, transitions between PWM and PFM, and both serial interfaces are validated on the test board.
ContributorsMumma Reddy, Abhiram (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
153401-Thumbnail Image.png
Description
Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there

Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan.
ContributorsSingla, Gaurav (Author) / Ogras, Umit Y. (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Unver, Ali (Committee member) / Arizona State University (Publisher)
Created2015
153414-Thumbnail Image.png
Description
Driven by stringent power and thermal constraints, heterogeneous multi-core processors, such as the ARM big-LITTLE architecture, are becoming increasingly popular. In this thesis, the use of low-power heterogeneous multi-cores as Microservers using web search as a motivational application is addressed. In particular, I propose a new family of scheduling policies

Driven by stringent power and thermal constraints, heterogeneous multi-core processors, such as the ARM big-LITTLE architecture, are becoming increasingly popular. In this thesis, the use of low-power heterogeneous multi-cores as Microservers using web search as a motivational application is addressed. In particular, I propose a new family of scheduling policies for heterogeneous microservers that assign incoming search queries to available cores so as to optimize for performance metrics such as mean response time and service level agreements, while guaranteeing thermally-safe operation. Thorough experimental evaluations on a big-LITTLE platform demonstrate, on an heterogeneous eight-core Samsung Exynos 5422 MpSoC, with four big and little cores each, that naive performance oriented scheduling policies quickly result in thermal instability, while the proposed policies not only reduce peak temperature but also achieve 4.8x reduction in processing time and 5.6x increase in energy efficiency compared to baseline scheduling policies.
ContributorsJain, Sankalp (Author) / Ogras, Umit Y. (Thesis advisor) / Garg, Siddharth (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2015
153288-Thumbnail Image.png
Description
Register file (RF) memory is important in low power system on chip (SOC) due to its

inherent low voltage stability. Moreover, designs increasingly use compiled instead of custom memory blocks, which frequently employ static, rather than pre-charged dynamic RFs. In this work, the various RFs designed for a microprocessor cache and

Register file (RF) memory is important in low power system on chip (SOC) due to its

inherent low voltage stability. Moreover, designs increasingly use compiled instead of custom memory blocks, which frequently employ static, rather than pre-charged dynamic RFs. In this work, the various RFs designed for a microprocessor cache and register files are discussed. Comparison between static and dynamic RF power dissipation and timing characteristics is also presented. The relative timing and power advantages of the designs are shown to be dependent on the memory aspect ratio, i.e. array width and height.
ContributorsVashishtha, Vinay (Author) / Clark, Lawrence T. (Thesis advisor) / Seo, Jae-Sun (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2014
153247-Thumbnail Image.png
Description
The design, fabrication and testing of a novel full waveguide band ortho-mode transducer (OMT) for operation from 750-1150 GHz is presented in this dissertation. OMT is a device that separates orthogonal polarizations within the same frequency band. At millimeter and sub millimeter wavelengths, OMTs can achieve precise characterization of the

The design, fabrication and testing of a novel full waveguide band ortho-mode transducer (OMT) for operation from 750-1150 GHz is presented in this dissertation. OMT is a device that separates orthogonal polarizations within the same frequency band. At millimeter and sub millimeter wavelengths, OMTs can achieve precise characterization of the amplitude, spectrum and polarization of electromagnetic radiation by increasing spectral coverage and sensitivity while reducing aperture size, optical spill and instrumental polarization offsets. A fully planar design is implemented with the use of Robinson OMT model along with a planar finline circuit. CST Microwave Studio is used to design and simulate OMT. Existing finline circuits which were fabricated using photolithographic techniques on a thin dielectric substrate were employed. The finline chips are fabricated on a thin (1 µm) SOI substrate with thick (5 µm) gold finline metallization and gold beam leads for chip grounding. The OMT is designed with H plane splits in the through arm and E plane splits in the side arm to comply with the existing machining tools and technique. Computer Numerical Controlled (CNC) machining is used to fabricate the OMT split block. The OMT is tested at Jet Propulsion Laboratory (JPL) using Agilent PNA-X VNA and VDI WR1.0 extension heads. In the future, this OMT design could be a part of a fully integrated dual polarization mixer block, with the input horn, OMT and both mixers fabricated in a single flangeless split block. In Radio Astronomy, integrated dual polarization mixers of this type will increase the signal processing speed by 40%. This type of OMT can also be used for terahertz RADAR and communication purposes.
ContributorsSirsi, Siddhartha (Author) / Groppi, Christopher (Thesis advisor) / Aberle, James T., 1961- (Thesis advisor) / Mauskopf, Philip (Committee member) / Arizona State University (Publisher)
Created2014
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
150737-Thumbnail Image.png
Description
During the last decades the development of the transistor and its continuous down-scaling allowed the appearance of cost effective wireless communication systems. New generation wideband wireless mobile systems demand high linearity, low power consumption and the low cost devices. Traditional RF systems are mainly analog-based circuitry. Contrary to digital circuits,

During the last decades the development of the transistor and its continuous down-scaling allowed the appearance of cost effective wireless communication systems. New generation wideband wireless mobile systems demand high linearity, low power consumption and the low cost devices. Traditional RF systems are mainly analog-based circuitry. Contrary to digital circuits, the technology scaling results in reduction on the maximum voltage swing which makes RF design very challenging. Pushing the interface between the digital and analog boundary of the RF systems closer to the antenna becomes an attractive trend for modern RF devices. In order to take full advantages of the deep submicron CMOS technologies and digital signal processing (DSP), there is a strong trend towards the development of digital transmitter where the RF upconversion is part of the digital-to-analog conversion (DAC). This thesis presents a new digital intermediate frequency (IF) to RF transmitter for 2GHz wideband code division multiple access (W-CDMA). The proposed transmitter integrates a 3-level digital IF current-steering cell, an up-conversion mixer with a tuned load and an RF variable gain amplifier (RF VGA) with an embedded finite impulse response (FIR) reconstruction filter in the up-conversion path. A 4th-order 1.5-bit IF bandpass sigma delta modulator (BP SDM) is designed to support in-band SNR while the out-of-band quantization noise due to the noise shaping is suppressed by the embedded reconstruction filter to meet spectrum emission mask and ACPR requirements. The RF VGA provides 50dB power scaling in 10-dB steps with less than 1dB gain error. The design is fabricated in a 0.18um CMOS technology with a total core area of 0.8 x 1.6 mm2. The IC delivers 0dBm output power at 2GHz and it draws approximately 120mA from a 1.8V DC supply at the maximum output power. The measurement results proved that a digital-intensive digital IF to RF converter architecture can be successfully employed for WCDMA transmitter application.
ContributorsHan, Yongping (Author) / Kiaei, Sayfe (Thesis advisor) / Yu, Hongyu (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
150986-Thumbnail Image.png
Description
The high cut-off frequency of deep sub-micron CMOS technologies has enabled the integration of radio frequency (RF) transceivers with digital circuits. However, the challenging point is the integration of RF power amplifiers, mainly due to the low breakdown voltage of CMOS transistors. Silicon-on-insulator (SOI) metal semiconductor field effect transistors (MESFETs)

The high cut-off frequency of deep sub-micron CMOS technologies has enabled the integration of radio frequency (RF) transceivers with digital circuits. However, the challenging point is the integration of RF power amplifiers, mainly due to the low breakdown voltage of CMOS transistors. Silicon-on-insulator (SOI) metal semiconductor field effect transistors (MESFETs) have been introduced to remedy the limited headroom concern in CMOS technologies. The MESFETs presented in this thesis have been fabricated on different SOI-CMOS processes without making any change to the standard fabrication steps and offer 2-30 times higher breakdown voltage than the MOSFETs on the same process. This thesis explains the design steps of high efficiency and wideband RF transmitters using the proposed SOI-CMOS compatible MESFETs. This task involves DC and RF characterization of MESFET devices, along with providing a compact Spice model for simulation purposes. This thesis presents the design of several SOI-MESFET RF power amplifiers operating at 433, 900 and 1800 MHz with ~40% bandwidth. Measurement results show a peak power added efficiency (PAE) of 55% and a peak output power of 22.5 dBm. The RF-PAs were designed to operate in Class-AB mode to minimize the linearity degradation. Class-AB power amplifiers lead to poor power added efficiency, especially when fed with signals with high peak to average power ratio (PAPR) such as wideband code division multiple access (W-CDMA). Polar transmitters have been introduced to improve the efficiency of RF-PAs at backed-off powers. A MESFET based envelope tracking (ET) polar transmitter was designed and measured. A low drop-out voltage regulator (LDO) was used as the supply modulator of this polar transmitter. MESFETs are depletion mode devices; therefore, they can be configured in a source follower configuration to have better stability and higher bandwidth that MOSFET based LDOs. Measurement results show 350 MHz bandwidth while driving a 10 pF capacitive load. A novel polar transmitter is introduced in this thesis to alleviate some of the limitations associated with polar transmitters. The proposed architecture uses the backgate terminal of a partially depleted transistor on SOI process, which relaxes the bandwidth and efficiency requirements of the envelope amplifier in a polar transmitter. The measurement results of the proposed transmitter demonstrate more than three times PAE improvement at 6-dB backed-off output power, compared to the traditional RF transmitters.
ContributorsGhajar, Mohammad Reza (Author) / Thornton, Trevor (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
151252-Thumbnail Image.png
Description
Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low

Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low gain is characteristic of these processes and hence a tradeoff that can enable to get back gain by trading speed is crucial. This thesis proposes a solution that increases the speed of sampling of a circuit by a factor of three while reducing the specifications on analog blocks and keeping the power nearly constant. The techniques are based on the switched capacitor technique called Correlated Level Shifting. A triple channel Cyclic ADC has been implemented, with each channel working at a sampling frequency of 3.33MS/s and a resolution of 14 bits. The specifications are compared with that based on a traditional architecture to show the superiority of the proposed technique.
ContributorsSivakumar, Balasubramanian (Author) / Farahani, Bahar Jalali (Thesis advisor) / Garrity, Douglas (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2012