Matching Items (8)
152692-Thumbnail Image.png
Description
Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic

Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with sub-wavelength dimensions, thus enabling sub-wavelength cavity lasers. Based on this idea, I fabricated two different kinds of metallic cavity nanolasers with rectangular and circular geometries with InGaAs as the gain material and silver as the metallic shell. The lasing wavelength is around 1.55 μm, intended for optical communication applications. Continuous wave (CW) lasing at cryogenic temperature under current injection was achieved on devices with a deep sub-wavelength physical cavity volume smaller than 0.2 λ3. Improving device fabrication process is one of the main challenges in the development of metallic cavity nanolasers due to its ultra-small size. With improved fabrication process and device design, CW lasing at room temperature was demonstrated as well on a sub-wavelength rectangular device with a physical cavity volume of 0.67 λ3. Experiments verified that a small circular nanolasers supporting TE¬01 mode can generate an azimuthal polarized laser beam, providing a compact such source under electrical injection. Sources with such polarizations could have many special applications. Study of digital modulation of circular nanolasers showed that laser noise is an important factor that will affect the data rate of the nanolaser when used as the light source in optical interconnects. For future development, improving device fabrication processes is required to improve device performance. In addition, techniques need to be developed to realize nanolaser/Si waveguide integration. In essence, resolving these two critical issues will finally pave the way for these nanolasers to be used in various practical applications.
ContributorsDing, Kang (Author) / Ning, Cun-Zheng (Thesis advisor) / Yu, Hongbin (Committee member) / Palais, Joseph (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2014
130318-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement.

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
ContributorsNogly, Przemyslaw (Author) / Panneels, Valerie (Author) / Nelson, Garrett (Author) / Gati, Cornelius (Author) / Kimura, Tetsunari (Author) / Milne, Christopher (Author) / Milathianaki, Despina (Author) / Kubo, Minoru (Author) / Wu, Wenting (Author) / Conrad, Chelsie (Author) / Coe, Jesse (Author) / Bean, Richard (Author) / Zhao, Yun (Author) / Bath, Petra (Author) / Dods, Robert (Author) / Harimoorthy, Rajiv (Author) / Beyerlein, Kenneth R. (Author) / Rheinberger, Jan (Author) / James, Daniel (Author) / Deponte, Daniel (Author) / Li, Chufeng (Author) / Sala, Leonardo (Author) / Williams, Garth J. (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Berntsen, Peter (Author) / Nango, Eriko (Author) / Iwata, So (Author) / Chapman, Henry N. (Author) / Fromme, Petra (Author) / Frank, Matthias (Author) / Abela, Rafael (Author) / Boutet, Sebastien (Author) / Barty, Anton (Author) / White, Thomas A. (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Neutze, Richard (Author) / Schertler, Gebhard (Author) / Standfuss, Jorg (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-08-22
130313-Thumbnail Image.png
Description
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
ContributorsLi, Dianfan (Author) / Stansfeld, Phillip J. (Author) / Sansom, Mark S. P. (Author) / Keogh, Aaron (Author) / Vogeley, Lutz (Author) / Howe, Nicole (Author) / Lyons, Joseph A. (Author) / Aragao, David (Author) / Fromme, Petra (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Kupitz, Christopher (Author) / Rendek, Kimberley (Author) / Weierstall, Uwe (Author) / Zatsepin, Nadia (Author) / Cherezov, Vadim (Author) / Liu, Wei (Author) / Bandaru, Sateesh (Author) / English, Niall J. (Author) / Gati, Cornelius (Author) / Barty, Anton (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Diederichs, Kay (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Seibert, M. Marvin (Author) / Caffrey, Martin (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-12-17
130308-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) has opened a new era in crystallo­graphy by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption.

Serial femtosecond crystallography (SFX) has opened a new era in crystallo­graphy by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.
ContributorsConrad, Chelsie (Author) / Basu, Shibom (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Schaffer, Alexander (Author) / Roy Chowdhury, Shatabdi (Author) / Zatsepin, Nadia (Author) / Aquila, Andrew (Author) / Coe, Jesse (Author) / Gati, Cornelius (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Kupitz, Christopher (Author) / Nelson, Garrett (Author) / Subramanian, Ganesh (Author) / White, Thomas A. (Author) / Zhao, Yun (Author) / Zook, James (Author) / Boutet, Sebastien (Author) / Cherezov, Vadim (Author) / Spence, John (Author) / Fromme, Raimund (Author) / Weierstall, Uwe (Author) / Fromme, Petra (Author) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor)
Created2015-06-30
130307-Thumbnail Image.png
Description
Recently we have seen rapid progress in the serial crystallography (SC) method at X-ray free-electron lasers (XFELs). Injection of thousands of protein microcrystals into the ∼10[superscript 12] photons of few-femtosecond XFEL pulses has allowed the structure determination of crystals grown in vivo, or of submicron size, and from challenging targets

Recently we have seen rapid progress in the serial crystallography (SC) method at X-ray free-electron lasers (XFELs). Injection of thousands of protein microcrystals into the ∼10[superscript 12] photons of few-femtosecond XFEL pulses has allowed the structure determination of crystals grown in vivo, or of submicron size, and from challenging targets such as membrane proteins. For time-resolved studies, the small crystal size allows for rapid diffusive saturation in mix-and-inject analysis of biochemical reactions, and full optical saturation of the sample by a pump laser in studies of light-driven proteins. The ability to outrun most radiation damage avoids the need for sample cooling and its artifacts, allowing studies of molecular machines at work in their correct room-temperature thermal bath or a controlled chemical environment.
ContributorsStandfuss, Jorg (Author) / Spence, John (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03
130301-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of “diffraction-before-destruction.” However, de novo structure factor phase determination using XFELs

Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of “diffraction-before-destruction.” However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A[subscript 2A] adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.
ContributorsBatyuk, Alexander (Author) / Galli, Lorenzo (Author) / Ishchenko, Andrii (Author) / Han, Gye Won (Author) / Gati, Cornelius (Author) / Popov, Petr A. (Author) / Lee, Ming-Yue (Author) / Stauch, Benjamin (Author) / White, Thomas A. (Author) / Barty, Anton (Author) / Aquila, Andrew (Author) / Hunter, Mark S. (Author) / Liang, Mengning (Author) / Boutet, Sebastien (Author) / Pu, Mengchen (Author) / Liu, Zhi-jie (Author) / Nelson, Garrett (Author) / James, Daniel (Author) / Li, Chufeng (Author) / Zhao, Yun (Author) / Spence, John (Author) / Liu, Wei (Author) / Fromme, Petra (Author) / Katritch, Vsevolod (Author) / Weierstall, Uwe (Author) / Stevens, Raymond C. (Author) / Cherezov, Vadim (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-09-23
128510-Thumbnail Image.png
Description

We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an

We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

ContributorsWhite, Thomas A. (Author) / Barty, Anton (Author) / Liu, Wei (Author) / Ishchenko, Andrii (Author) / Zhang, Haitao (Author) / Gati, Cornelius (Author) / Zatsepin, Nadia (Author) / Basu, Shibom (Author) / Oberthur, Dominik (Author) / Metz, Markus (Author) / Beyerlein, Kenneth R. (Author) / Yoon, Chun Hong (Author) / Yefanov, Oleksandr M. (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Messerschmidt, Marc (Author) / Koglin, Jason E. (Author) / Boutet, Sebastien (Author) / Weierstall, Uwe (Author) / Cherezov, Vadim (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-01
128362-Thumbnail Image.png
Description

The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser

The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.

ContributorsZhang, Xianjun (Author) / Zhao, Fei (Author) / Wu, Yiran (Author) / Yang, Jun (Author) / Han, Gye Won (Author) / Zhao, Suwen (Author) / Ishchenko, Andrii (Author) / Ye, Lintao (Author) / Lin, Xi (Author) / Ding, Kang (Author) / Dharmarajan, Venkatasubramaniam (Author) / Griffin, Patrick R. (Author) / Gati, Cornelius (Author) / Nelson, Garrett (Author) / Hunter, Mark S. (Author) / Hanson, Michael A. (Author) / Cherezov, Vadim (Author) / Stevens, Raymond C. (Author) / Tan, Wenfu (Author) / Tao, Houchao (Author) / Xu, Fei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-17